Results of our method on the non-disclosed IVDM3Seg challenge data as generated by the challenge organizers using our prepared Docker containers as described in the paper.
binary w/ latent variable
- Container name:
ivdm3seg/binary
- Container image
- Results
- Container name:
ternary
- Container name:
ivdm3seg/ternary
- Container image
- Results
- Container name:
binary w/ latent variable
(larger localizer patch size)- Container name:
ivdm3seg/binary_large
- Container image
- Results
- Container name:
- Download the container un-7zip it, such that you are left with an
IMG.tar
file - Load the image into Docker, i.e.,
docker load --input IMG.tar
- Finnally, you can use the instructions as specified by the challenge to
obtain segmentation results for an image:
CID=`docker run -dit --runtime=nvidia --rm -v /input -v /output CONTAINER_NAME` docker cp TESTIMAGE_fat.nii.gz $CID:/input/fat.nii.gz docker cp TESTIMAGE_wat.nii.gz $CID:/input/wat.nii.gz docker cp TESTIMAGE_inn.nii.gz $CID:/input/inn.nii.gz docker cp TESTIMAGE_opp.nii.gz $CID:/input/opp.nii.gz docker exec $CID /challenge/run docker cp $CID:/output/result.nii.gz TESTIMAGE_segmentation.nii.gz docker stop $CID
Note: You need the NVIDIA runtime to run the Docker container.