Skip to content

gouldberg/reinforcement-learning-awesome-varieties

Repository files navigation

reinforcement-learning-awesome-varieties

  • I have tried reinforcement learning basic approach to some environment sets.
  • Also I tried PTAN, RAY a bit.
  • Codes and scripts are referring to multiple textbooks, but with some original arrangements.
  • Some codes includes playing learned model.

Approaches and Enviroments covered are: (just example)

  • Actor-Critic, replay buffer
    • cartpole-v0 (gym)
  • A2C (Advantage Actor-Critic)
    • Catcher-v0
    • HalfCheetahBulletEnv-v0
    • MinitaurBulletEnv-v0
    • PongNoFrameskip-v4
  • A3C (Asynchronous Advantage Actor-Critic)
    • PongNoFrameskip-v4
  • ACKTR (Actor-Critic using Kronecker-Factored Trust Region)
    • HalfCheetahBulletEnv-v0
  • simple neural net (value function agent, policy gradient agent)
    • cartpole-v0
  • D4PG (Distributed Distributional Deterministic Policy Gradients)
    • ant
    • HalfCheetahBulletEnv-v0
    • MinitaurBulletEnv-v0
  • Dagger
    • FrozenLakeEasy-v0 (gym)
  • DDPG (Deep Deterministic Policy Gradients)
    • MinitaurBulletEnv-v0
  • Deep-Q
    • catcher
  • Distributional DQN
    • PongNoFrameskip-v4
  • Dueling DQN
    • PongNoFrameskip-v4
  • Evolution
    • Catcher-v0
  • GAN
    • Atari
  • Noisy Networks
    • PongNoFrameskip-v4
  • PPO (Proximal Policy Optimization)
    • cartpole-v0
    • HalfCheetahBulletEnv-v0
  • Priority Replay Buffer
    • PongNoFrameskip-v4
  • SAC (Soft Actor-Critic)
    • HalfCheetahBulletEnv-v0
  • SARSA (state-Action-Reward-State-Action)
    • FrozenLakeEasy-v0
  • TRPO (Trust Region Policy Optimization)
    • HalfCheetahBulletEnv-v0

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages