The 3rd place winner of the 2020 On-device Visual Intelligence Competition (OVIC) of Low-Power Computer Vision Challenge (LPCVC), subtrack of Real-time Image Classification on LG G8.
Tested with tflite-runtime 2.1.0 on Raspberry Pi 4 (single core)
Model | Input Image Size | Accuracy (UINT8) | Latency | Download | SHA256 Checksum |
---|---|---|---|---|---|
fpnet_pixel4 (uint8) | 192x192 | 71.93% | 60.1ms | Download Link | 6e927d7af8da1eb9297017ebe92a67632ce73f612ff32cbfa3917f88d761a5f9 |
fpnet_dsp (uint8) | 224x224 | 74.18% | 94.9ms | Download Link | b77445326ef3f64fc8d3236b213e121aba5004dee4449deceb13f246477add4e |
fpnet_fpga (uint8) | 160x160 | 70.28% | 48ms | Download Link | 7b15050f0f2f723b13cfc001026a36133f78103049c94ae8fe023807e355fc20 |
$ python3 train.py --model_name fpnet_pixel4 \
--batch_size 1024 \
--epochs 250 \
--warmup_epochs 5 \
--base_lr 0.4 \
--init_lr 0.1 \
--image_size 192 \
--use_cache \
--imagenet_path $IMAGENET_PATH \
--checkpoint_path $CHECKPOINT_PATH
$ python3 convert_quant.py --keras_model_file $KERAS_FILE \
--output_file $TFLITE_FILE \
--image_size 192 \
--imagenet_path $IMAGENET_PATH
$ python3 val_quant.py --tflite_model_file $TFLITE_FILE \
--image_size 192 \
--imagenet_path $IMAGENET_PATH
- Neural architecture search with multivariate regression
- Once-for-All supernet
- MobileNet V3 backbone
- Replacing Hard-swish with ReLU6 for better quantization performace