-
Baselines
- LSTM
- GRU
- ResNLS
-
Hyperparameter tuning
-
Increase layers
-
Increase features
-
if ton: change dataset
- Stock Mixer
-
New ideas
- Apply Transformers
-
Implement ideas
- TBD
-
Experiment
- Try different features and analysis
-
Result analysis
- Stock Mixer
- ...baselines
- ...new ideas
- Setup experiments (data, metrics, tools)
- choose metrics
- Run baselines
- write more metrics (3)
- LSTM GRU (S&P500)
- write model ResNLS (1)
S&P500 | |
---|---|
Start Time | 16-01-04 |
End Time | 22-05-25 |
Train Days | 1006 |
Val Days | 253 |
Test Days | 352 |
- Information Coeffcient (IC)
- Rank Information Coeffcient (RIC)
- Precision@N (prec@N)
- Sharpe Ratio (SR)
$ X \in \mathbb{R}^{T \times F} \to p \in \mathbb{R} \to r \in \mathbb{R} $
$ T = 16, F = 5 $
$ r^{t} = \frac{p^{t} - p^{t-1}}{p^{t-1}}$
$ L = L_\text{MSE} + \alpha \sum_{i=1}^{N} \sum_{j=1}^{N} \max\left(0, -(\hat{r}{{t}{i}} - \hat{r}{{{t}{j}}})({r}{{t}{i}} - {r}{{{t}{j}}})\right) $
Model | Metric 1 | Metric 2 | Metric 3 |
---|---|---|---|
- https://github.com/Waterkin/stock-top-papers - for providing the list of top papers in stock prediction