Skip to content

Commit

Permalink
finalize de_ch_4_part2
Browse files Browse the repository at this point in the history
  • Loading branch information
fabridamicelli committed Nov 4, 2023
1 parent 0c66281 commit 22986cc
Show file tree
Hide file tree
Showing 3 changed files with 108 additions and 103 deletions.
54 changes: 28 additions & 26 deletions chapters/de/chapter4/4.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ Das Konzept von Modellkarte ("model card") stammt aus einer Forschungsrichtung b
The model card usually starts with a very brief, high-level overview of what the model is for, followed by additional details in the following sections:
Eine Modellkarte fängt mit einer kurzen, große Übersicht davon, was das Modell kann plus einige Details in den folgenden Abschnitte:

- Modell Beschreibung
- Modell-Beschreibung
- Beabsichtigte Nutzung und Einschränkungen
- Modell-Bedienung
- Einschränkungen und Bias
Expand All @@ -28,54 +28,56 @@ Eine Modellkarte fängt mit einer kurzen, große Übersicht davon, was das Model

Lass uns anschauen, was genau in jedem Abschnitt stehen sollte.

#TODO
### Model description
# TODO
### Modell-Beschreibung

The model description provides basic details about the model. This includes the architecture, version, if it was introduced in a paper, if an original implementation is available, the author, and general information about the model. Any copyright should be attributed here. General information about training procedures, parameters, and important disclaimers can also be mentioned in this section.
Die Modellbeschreibung enthält grundlegende Details zum Modell. Dazu gehören die Architektur, die Version, ob es in einem Paper vorgestellt wurde, ob eine Originalimplementierung verfügbar ist, der Autor und allgemeine Informationen über das Modell. Eventuelle Urheberrechte sind hier anzugeben. In diesem Abschnitt können auch allgemeine Informationen zu Trainingsverfahren, Parametern und wichtigen Haftungsausschlüssen erwähnt werden.

### Intended uses & limitations
### Verwendungszweck und Einschränkungen

Here you describe the use cases the model is intended for, including the languages, fields, and domains where it can be applied. This section of the model card can also document areas that are known to be out of scope for the model, or where it is likely to perform suboptimally.
Hier beschreibst du die angedachten Anwendungsfälle fürs Modell, einschließlich der Sprachen, Felder und Domänen, in denen es angewendet werden kann. In diesem Abschnitt der Modellkarte können auch Bereiche dokumentiert werden, die bekanntermaßen außerhalb des Anwendungsbereichs des Modells liegen oder in denen die Leistung wahrscheinlich nicht optimal ist.

### How to use
### Modell-Bedienung

This section should include some examples of how to use the model. This can showcase usage of the `pipeline()` function, usage of the model and tokenizer classes, and any other code you think might be helpful.
Dieser Abschnitt sollte einige Beispiele für die Verwendung des Modells enthalten. Dies kann die Verwendung der Funktion `pipeline()`, die Verwendung der Modell- und Tokenizer-Klassen und jeden anderen Code zeigen, der deiner Meinung nach hilfreich sein könnte.

### Training data

This part should indicate which dataset(s) the model was trained on. A brief description of the dataset(s) is also welcome.
### Trainingsdaten

### Training procedure
In diesem Teil sollte angegeben werden, auf welchen Datensatz bzw. Datensätze das Modell trainiert wurde. Eine kurze Beschreibung des Datensatzes/der Datensätze ist ebenfalls willkommen.

In this section you should describe all the relevant aspects of training that are useful from a reproducibility perspective. This includes any preprocessing and postprocessing that were done on the data, as well as details such as the number of epochs the model was trained for, the batch size, the learning rate, and so on.
### Trainingsverfahren

### Variable and metrics
In diesem Abschnitt solltest du alle relevanten Aspekte des Modelltrainingsverfahren beschreiben, die für die Reproduzierbarkeit nützlich sind. Dazu gehören alle Vor- und Nachbearbeitungen, die an den Daten durchgeführt wurden, sowie Details wie die Anzahl der Trainingsepochene, Batch-Größe, die Lernrate usw.

Here you should describe the metrics you use for evaluation, and the different factors you are mesuring. Mentioning which metric(s) were used, on which dataset and which dataset split, makes it easy to compare you model's performance compared to that of other models. These should be informed by the previous sections, such as the intended users and use cases.
### Variablen und Metriken

### Evaluation results
Hier solltest du die Bewertungsmetriken beschreiben und die verschiedenen Faktoren, die du dabei mit berücksichtigst. Durch die Angabe, welche Metrik(en) verwendet wurden, für welchen Datensatz und welche Datensatzaufteilung, kannst du die Leistung deines Modells leicht mit der anderer Modelle vergleichen. Diese sollten durch die vorherigen Abschnitte informiert werden, wie z. B. die beabsichtigten Benutzer und Anwendungsfälle.

Finally, provide an indication of how well the model performs on the evaluation dataset. If the model uses a decision threshold, either provide the decision threshold used in the evaluation, or provide details on evaluation at different thresholds for the intended uses.
### Evaluierungsergebnisse

## Example
Abschließend gibst du an, wie gut das Modell mit dem Bewertungsdatensatz abschneidet. Wenn das Modell einen Entscheidungsschwellenwert verwendet, gib entweder den in der Bewertung verwendeten Entscheidungsschwellenwert an oder mach Angaben zur Bewertung bei verschiedenen Schwellenwerten für die beabsichtigten Verwendungszwecke.

Check out the following for a few examples of well-crafted model cards:
## Beispiel

Im Folgenden findest du einige Beispiele von guten Modellkarten:

- [`bert-base-cased`](https://huggingface.co/bert-base-cased)
- [`gpt2`](https://huggingface.co/gpt2)
- [`distilbert`](https://huggingface.co/distilbert-base-uncased)

More examples from different organizations and companies are available [here](https://github.com/huggingface/model_card/blob/master/examples.md).

## Note
Mehr Beispiele von verschiedene Organisationen/Firmen sind hier verfügbar [here](https://github.com/huggingface/model_card/blob/master/examples.md).

## Hinweis

Model cards are not a requirement when publishing models, and you don't need to include all of the sections described above when you make one. However, explicit documentation of the model can only benefit future users, so we recommend that you fill in as many of the sections as possible to the best of your knowledge and ability.
Modellkarten sind bei der Veröffentlichung von Modellen nicht erforderlich und du musst bei der Erstellung nicht alle oben beschriebenen Abschnitte einbeziehen. Allerdings kann eine explizite Dokumentation des Modells künftigen Nutzern nur nützen, daher empfehlen wir dir, so viele Abschnitte wie möglich nach bestem Wissen und Gewissen auszufüllen.

## Model card metadata
## Modellkarte-Metadaten

If you have done a little exploring of the Hugging Face Hub, you should have seen that some models belong to certain categories: you can filter them by tasks, languages, libraries, and more. The categories a model belongs to are identified according to the metadata you add in the model card header.
Wenn du den Hugging Face Hub ein wenig erkundet hast, solltest du gesehen haben, dass einige Modelle zu bestimmten Kategorien gehören: Du kannst sie nach Aufgaben, Sprachen, Bibliotheken und mehr filtern. Die Kategorien, zu denen ein Modell gehört, werden anhand der Metadaten identifiziert, die du im Kopf der Modellkarte hinzufügst.

For example, if you take a look at the [`camembert-base` model card](https://huggingface.co/camembert-base/blob/main/README.md), you should see the following lines in the model card header:
Zum Beispiel sieh dir dieses an [`camembert-base` model card](https://huggingface.co/camembert-base/blob/main/README.md). Du solltest folgende Zeilen auf der Modellkarte sehen:

```
---
Expand All @@ -86,6 +88,6 @@ datasets:
---
```

This metadata is parsed by the Hugging Face Hub, which then identifies this model as being a French model, with an MIT license, trained on the Oscar dataset.
Diese Metadaten werden vom Hugging Face Hub analysiert, der dieses Modell dann als französisches Modell mit einer MIT-Lizenz identifiziert, das auf dem Oscar-Datensatz trainiert wurde.

The [full model card specification](https://github.com/huggingface/hub-docs/blame/main/modelcard.md) allows specifying languages, licenses, tags, datasets, metrics, as well as the evaluation results the model obtained when training.
Die vollständige [Modellkarte](https://github.com/huggingface/hub-docs/blame/main/modelcard.md) ermöglicht die Angabe von Sprachen, Lizenzen, Tags, Datensätzen, Metriken sowie den Bewertungsergebnissen, die das Modell wann erhalten hat Ausbildung.
8 changes: 4 additions & 4 deletions chapters/de/chapter4/5.mdx
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
# Part 1 completed!
# Teil 1 abgeschlossen!

<CourseFloatingBanner
chapter={4}
classNames="absolute z-10 right-0 top-0"
/>

This is the end of the first part of the course! Part 2 will be released on November 15th with a big community event, see more information [here](https://huggingface.co/blog/course-launch-event).
Dies ist das Ende des ersten Teils des Kurses! Teil 2 wird am 15. November mit einem großen Community-Event veröffentlicht, weitere Informationen findest du [hier](https://huggingface.co/blog/course-launch-event).

You should now be able to fine-tune a pretrained model on a text classification problem (single or pairs of sentences) and upload the result to the Model Hub. To make sure you mastered this first section, you should do exactly that on a problem that interests you (and not necessarily in English if you speak another language)! You can find help in the [Hugging Face forums](https://discuss.huggingface.co/) and share your project in [this topic](https://discuss.huggingface.co/t/share-your-projects/6803) once you're finished.
Du solltest nun in der Lage sein, ein vorab trainiertes Modell für ein Textklassifizierungsproblem (einzelne Sätze oder Satzpaare) zu optimieren und das Ergebnis in den Model Hub hochzuladen. Um sicherzustellen, dass du diesen ersten Abschnitt beherrschst, solltest du genau das an einem Problem verwenden, das dich interessiert (und nicht unbedingt auf Englisch, wenn Sie eine andere Sprache sprechen)! Hilfe findest du in den [Hugging Face-Foren](https://discuss.huggingface.co/) und du kannst dein Projekt in [diesem Thema](https://discuss.huggingface.co/t/share-your-projects) teilen /6803), sobald du damit fertig bist.

We can't wait to see what you will build with this!
Wir freuen uns darauf, zu sehen, was du alles damit baust!
Loading

0 comments on commit 22986cc

Please sign in to comment.