Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Yoink cpu struct #259

Merged
merged 5 commits into from
Oct 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 54 additions & 0 deletions crates/ratchet-core/src/cpu/binary.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
use crate::{
binary_apply_inplace, Binary, BinaryOp, CPUOperation, DType, OpGuards, Operation,
OperationError, RVec, StorageView, Tensor, TensorDType,
};
use core::marker::PhantomData;
use half::{bf16, f16};

pub struct BinaryOps<T: TensorDType> {
dtype: PhantomData<T>,
}

macro_rules! impl_cpu_binary_op {
($method_name:ident, $dtype:ident, $op:expr) => {
fn $method_name(lhs: &Tensor, rhs: &Tensor, dst: Tensor) -> Result<Tensor, OperationError> {
binary_apply_inplace::<$dtype>(lhs, rhs, &dst, $op)?;
Ok(dst)
}
};
}

macro_rules! impl_cpu_binary {
($dtype:ident) => {
impl BinaryOps<$dtype> {
impl_cpu_binary_op!(add, $dtype, |lhs, rhs| lhs + rhs);
impl_cpu_binary_op!(sub, $dtype, |lhs, rhs| lhs - rhs);
impl_cpu_binary_op!(mul, $dtype, |lhs, rhs| lhs * rhs);
impl_cpu_binary_op!(div, $dtype, |lhs, rhs| lhs / rhs);

pub fn apply(op: &Binary, dst: Tensor) -> Result<Tensor, OperationError> {
match op.op() {
BinaryOp::Add => Self::add(op.lhs(), op.rhs(), dst),
BinaryOp::Sub => Self::sub(op.lhs(), op.rhs(), dst),
BinaryOp::Mul => Self::mul(op.lhs(), op.rhs(), dst),
BinaryOp::Div => Self::div(op.lhs(), op.rhs(), dst),
}
}
}
};
}

impl CPUOperation for Binary {
fn apply_cpu(&self, dst: Tensor) -> Result<Tensor, OperationError> {
match dst.dt() {
DType::F32 => BinaryOps::<f32>::apply(self, dst),
DType::F16 => BinaryOps::<f16>::apply(self, dst),
DType::BF16 => BinaryOps::<bf16>::apply(self, dst),
_ => todo!(),
}
}
}

impl_cpu_binary!(f32);
impl_cpu_binary!(f16);
impl_cpu_binary!(bf16);
2 changes: 1 addition & 1 deletion crates/ratchet-core/src/cpu/gemm.rs
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ fn gemm_impl<T: TensorDType>(
}

impl CPUOperation for Matmul {
fn apply(&self, dst: Tensor) -> Result<Tensor, OperationError> {
fn apply_cpu(&self, dst: Tensor) -> Result<Tensor, OperationError> {
fn run_gemm<T: TensorDType>(
spec: MatmulSpec,
lhs: &Tensor,
Expand Down
185 changes: 23 additions & 162 deletions crates/ratchet-core/src/cpu/mod.rs
Original file line number Diff line number Diff line change
@@ -1,176 +1,37 @@
mod binary;
pub mod gemm;
mod unary;

use crate::{
dequantize, Binary, BinaryOp, CPUBuffer, CPUOperation, Cast, Concat, DType, IndexSelect,
InvariantError, OpGuards, Operation, OperationError, RVec, Storage, StorageView, Tensor,
TensorDType, Unary, UnaryOp,
dequantize, Binary, CPUBuffer, Cast, Concat, DType, IndexSelect, InvariantError, LazyOp,
Operation, OperationError, RVec, Storage, Tensor, TensorDType,
};
use anyhow::anyhow;
use bytemuck::NoUninit;
use core::marker::PhantomData;
use half::{bf16, f16};
use num_traits::Float;

#[derive(Debug)]
pub struct CPU<T: TensorDType, OP: Operation> {
op: OP,
dtype: PhantomData<T>,
}

impl<T: TensorDType, OP: Operation> CPU<T, OP> {
pub fn new(op: OP) -> Self {
Self {
op,
dtype: PhantomData,
}
}
}

impl<T: TensorDType, OP: Operation> OpGuards for CPU<T, OP> {
fn check_shapes(&self) {
self.op.check_shapes();
}

fn check_dtypes(&self) {
self.op.check_dtypes();
}
}

impl<T: TensorDType, OP: Operation> Operation for CPU<T, OP> {
fn name(&self) -> &'static str {
self.op.name()
}

fn compute_view(&self) -> Result<StorageView, OperationError> {
self.op.compute_view()
}

fn srcs(&self) -> RVec<&Tensor> {
self.op.srcs()
}
}

macro_rules! impl_cpu_unary_op {
($method_name:ident, $op:expr) => {
fn $method_name(input: &Tensor, dst: Tensor) -> Result<Tensor, OperationError> {
unary_apply_fn(input, &dst, $op)?;
Ok(dst)
}
};
}

macro_rules! impl_cpu_unary_wrapper {
($dtype:ident, $conv:expr) => {
impl CPU<$dtype, Unary> {
impl_cpu_unary_op!(gelu, |x: $dtype| $conv(0.5)
* x
* ($conv(1.0)
+ $dtype::tanh(
$conv(0.797_884_6) * x * ($conv(1.0) + $conv(0.044715) * x * x)
)));

impl_cpu_unary_op!(tanh, |x: $dtype| x.tanh());
impl_cpu_unary_op!(exp, |x: $dtype| x.exp());
impl_cpu_unary_op!(log, |x: $dtype| x.ln());
impl_cpu_unary_op!(sin, |x: $dtype| x.sin());
impl_cpu_unary_op!(cos, |x: $dtype| x.cos());
impl_cpu_unary_op!(abs, |x: $dtype| x.abs());
impl_cpu_unary_op!(sqrt, |x: $dtype| x.sqrt());
impl_cpu_unary_op!(relu, |x: $dtype| x.max($conv(0.0)));
impl_cpu_unary_op!(floor, |x: $dtype| x.floor());
impl_cpu_unary_op!(ceil, |x: $dtype| x.ceil());
impl_cpu_unary_op!(neg, |x: $dtype| -x);
impl_cpu_unary_op!(silu, |x: $dtype| x / ($conv(1.0) + (-x).exp()));
impl_cpu_unary_op!(sigmoid, |x: $dtype| $conv(1.0) / ($conv(1.0) + (-x).exp()));
}
};
}

macro_rules! impl_cpu_unary {
($dtype:ident) => {
impl_cpu_unary!($dtype, |x| x);
};
($dtype:ident, $conv:expr) => {
impl_cpu_unary_wrapper!($dtype, $conv);

impl CPUOperation for CPU<$dtype, Unary> {
fn apply(&self, dst: Tensor) -> Result<Tensor, OperationError> {
match self.op.op() {
UnaryOp::Gelu => Self::gelu(self.op.input(), dst),
UnaryOp::Tanh => Self::tanh(self.op.input(), dst),
UnaryOp::Exp => Self::exp(self.op.input(), dst),
UnaryOp::Log => Self::log(self.op.input(), dst),
UnaryOp::Sin => Self::sin(self.op.input(), dst),
UnaryOp::Cos => Self::cos(self.op.input(), dst),
UnaryOp::Abs => Self::abs(self.op.input(), dst),
UnaryOp::Sqrt => Self::sqrt(self.op.input(), dst),
UnaryOp::Relu => Self::relu(self.op.input(), dst),
UnaryOp::Floor => Self::floor(self.op.input(), dst),
UnaryOp::Ceil => Self::ceil(self.op.input(), dst),
UnaryOp::Neg => Self::neg(self.op.input(), dst),
UnaryOp::Silu => Self::silu(self.op.input(), dst),
UnaryOp::Sigmoid => Self::sigmoid(self.op.input(), dst),
}
}
}
};
}

impl_cpu_unary!(f32);
impl_cpu_unary!(f16, f16::from_f32);
impl_cpu_unary!(bf16, bf16::from_f32);

pub fn cpu_unary(unary: Unary, dst: Tensor) -> Result<Tensor, OperationError> {
match dst.dt() {
DType::F32 => CPU::<f32, _>::new(unary).apply(dst),
DType::F16 => CPU::<f16, _>::new(unary).apply(dst),
DType::BF16 => CPU::<bf16, _>::new(unary).apply(dst),
_ => todo!(),
pub fn apply_operation(op: LazyOp, dst: Tensor) -> Result<Tensor, OperationError> {
match op {
LazyOp::Binary(b) => b.apply_cpu(dst),
LazyOp::Cast(c) => cpu_cast(c, dst),
LazyOp::Matmul(m) => m.apply_cpu(dst),
LazyOp::Softmax(_s) => todo!(),
LazyOp::RoPE(_r) => todo!(),
LazyOp::Unary(u) => u.apply_cpu(dst),
LazyOp::Reindex(_r) => todo!(),
LazyOp::Concat(c) => cpu_concat(c, dst),
LazyOp::Norm(_n) => todo!(),
LazyOp::Conv(_c) => todo!(),
LazyOp::Select(i) => cpu_index_select(i, dst),
LazyOp::IndexWrite(_i) => todo!(),
LazyOp::Cache(_c) => todo!(),
LazyOp::Const => todo!(),
LazyOp::View(_) => todo!(),
}
}

macro_rules! impl_cpu_binary_op {
($method_name:ident, $dtype:ident, $op:expr) => {
fn $method_name(lhs: &Tensor, rhs: &Tensor, dst: Tensor) -> Result<Tensor, OperationError> {
binary_apply_inplace::<$dtype>(lhs, rhs, &dst, $op)?;
Ok(dst)
}
};
}

macro_rules! impl_cpu_binary {
($dtype:ident) => {
impl CPU<$dtype, Binary> {
impl_cpu_binary_op!(add, $dtype, |lhs, rhs| lhs + rhs);
impl_cpu_binary_op!(sub, $dtype, |lhs, rhs| lhs - rhs);
impl_cpu_binary_op!(mul, $dtype, |lhs, rhs| lhs * rhs);
impl_cpu_binary_op!(div, $dtype, |lhs, rhs| lhs / rhs);
}

impl CPUOperation for CPU<$dtype, Binary> {
fn apply(&self, dst: Tensor) -> Result<Tensor, OperationError> {
match self.op.op() {
BinaryOp::Add => Self::add(self.op.lhs(), self.op.rhs(), dst),
BinaryOp::Sub => Self::sub(self.op.lhs(), self.op.rhs(), dst),
BinaryOp::Mul => Self::mul(self.op.lhs(), self.op.rhs(), dst),
BinaryOp::Div => Self::div(self.op.lhs(), self.op.rhs(), dst),
}
}
}
};
}

impl_cpu_binary!(f32);
impl_cpu_binary!(f16);
impl_cpu_binary!(bf16);

pub fn cpu_binary(binary: Binary, dst: Tensor) -> Result<Tensor, OperationError> {
match dst.dt() {
DType::F32 => CPU::<f32, _>::new(binary).apply(dst),
DType::F16 => CPU::<f16, _>::new(binary).apply(dst),
DType::BF16 => CPU::<bf16, _>::new(binary).apply(dst),
_ => todo!(),
}
pub trait CPUOperation: Operation {
fn apply_cpu(&self, dst: Tensor) -> Result<Tensor, OperationError>;
}

fn index_select<T: TensorDType>(
Expand Down
89 changes: 89 additions & 0 deletions crates/ratchet-core/src/cpu/unary.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
use crate::{
unary_apply_fn, CPUOperation, DType, OperationError, Tensor, TensorDType, Unary, UnaryOp,
};
use core::marker::PhantomData;
use half::{bf16, f16};
use num_traits::Float;

struct UnaryOps<T: TensorDType> {
dtype: PhantomData<T>,
}

macro_rules! impl_unary_ops {
($dtype:ident, $conv:expr) => {
impl UnaryOps<$dtype> {
impl_cpu_unary_op!(gelu, |x: $dtype| $conv(0.5)
* x
* ($conv(1.0)
+ $dtype::tanh(
$conv(0.797_884_6) * x * ($conv(1.0) + $conv(0.044715) * x * x)
)));

impl_cpu_unary_op!(tanh, |x: $dtype| x.tanh());
impl_cpu_unary_op!(exp, |x: $dtype| x.exp());
impl_cpu_unary_op!(log, |x: $dtype| x.ln());
impl_cpu_unary_op!(sin, |x: $dtype| x.sin());
impl_cpu_unary_op!(cos, |x: $dtype| x.cos());
impl_cpu_unary_op!(abs, |x: $dtype| x.abs());
impl_cpu_unary_op!(sqrt, |x: $dtype| x.sqrt());
impl_cpu_unary_op!(relu, |x: $dtype| x.max($conv(0.0)));
impl_cpu_unary_op!(floor, |x: $dtype| x.floor());
impl_cpu_unary_op!(ceil, |x: $dtype| x.ceil());
impl_cpu_unary_op!(neg, |x: $dtype| -x);
impl_cpu_unary_op!(silu, |x: $dtype| x / ($conv(1.0) + (-x).exp()));
impl_cpu_unary_op!(sigmoid, |x: $dtype| $conv(1.0) / ($conv(1.0) + (-x).exp()));

fn apply(op: &Unary, dst: Tensor) -> Result<Tensor, OperationError> {
match op.op() {
UnaryOp::Gelu => Self::gelu(op.input(), dst),
UnaryOp::Tanh => Self::tanh(op.input(), dst),
UnaryOp::Exp => Self::exp(op.input(), dst),
UnaryOp::Log => Self::log(op.input(), dst),
UnaryOp::Sin => Self::sin(op.input(), dst),
UnaryOp::Cos => Self::cos(op.input(), dst),
UnaryOp::Abs => Self::abs(op.input(), dst),
UnaryOp::Sqrt => Self::sqrt(op.input(), dst),
UnaryOp::Relu => Self::relu(op.input(), dst),
UnaryOp::Floor => Self::floor(op.input(), dst),
UnaryOp::Ceil => Self::ceil(op.input(), dst),
UnaryOp::Neg => Self::neg(op.input(), dst),
UnaryOp::Silu => Self::silu(op.input(), dst),
UnaryOp::Sigmoid => Self::sigmoid(op.input(), dst),
}
}
}
};
}

macro_rules! impl_cpu_unary_op {
($method_name:ident, $op:expr) => {
fn $method_name(input: &Tensor, dst: Tensor) -> Result<Tensor, OperationError> {
unary_apply_fn(input, &dst, $op)?;
Ok(dst)
}
};
}

impl CPUOperation for Unary {
fn apply_cpu(&self, dst: Tensor) -> Result<Tensor, OperationError> {
match dst.dt() {
DType::F32 => UnaryOps::<f32>::apply(self, dst),
DType::F16 => UnaryOps::<f16>::apply(self, dst),
DType::BF16 => UnaryOps::<bf16>::apply(self, dst),
_ => todo!(),
}
}
}

macro_rules! impl_cpu_unary {
($dtype:ident) => {
impl_cpu_unary!($dtype, |x| x);
};
($dtype:ident, $conv:expr) => {
impl_unary_ops!($dtype, $conv);
};
}

impl_cpu_unary!(f32);
impl_cpu_unary!(f16, f16::from_f32);
impl_cpu_unary!(bf16, bf16::from_f32);
4 changes: 0 additions & 4 deletions crates/ratchet-core/src/op.rs
Original file line number Diff line number Diff line change
Expand Up @@ -361,7 +361,3 @@ pub trait GPUOperation: Operation {
))
}
}

pub trait CPUOperation: Operation {
fn apply(&self, dst: Tensor) -> Result<Tensor, OperationError>;
}
24 changes: 4 additions & 20 deletions crates/ratchet-core/src/tensor.rs
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
use crate::gpu::{BindGroupEntry, CpuUniform, WgpuDevice};
use crate::{
cpu::*, ops::*, rvec, BufferSegment, CPUBuffer, CPUOperation, CompiledOp, DType, Device,
DeviceStorage, Executable, GPUBuffer, GPUOperation, InvariantError, LazyOp, Operation,
OperationError, RVec, RawCPUBuffer, Shape, Storage, Strides, TensorDType, TensorId,
cpu, ops::*, rvec, BufferSegment, CPUBuffer, CompiledOp, DType, Device, DeviceStorage,
Executable, GPUBuffer, GPUOperation, InvariantError, LazyOp, Operation, OperationError, RVec,
RawCPUBuffer, Shape, Storage, Strides, TensorDType, TensorId,
};
use derive_new::new;
use npyz::WriterBuilder;
Expand Down Expand Up @@ -747,23 +747,7 @@ impl Tensor {
}

pub fn cpu_apply(self, dst: Tensor) -> Option<Tensor> {
match self.op().clone() {
LazyOp::Binary(b) => cpu_binary(b, dst).ok(),
LazyOp::Cast(c) => cpu_cast(c, dst).ok(),
LazyOp::Matmul(m) => m.apply(dst).ok(),
LazyOp::Softmax(_s) => todo!(),
LazyOp::RoPE(_r) => todo!(),
LazyOp::Unary(u) => cpu_unary(u, dst).ok(),
LazyOp::Reindex(_r) => todo!(),
LazyOp::Concat(c) => cpu_concat(c, dst).ok(),
LazyOp::Norm(_n) => todo!(),
LazyOp::Conv(_c) => todo!(),
LazyOp::Select(i) => cpu_index_select(i, dst).ok(),
LazyOp::IndexWrite(_i) => todo!(),
LazyOp::Cache(_c) => todo!(),
LazyOp::Const => None,
LazyOp::View(_) => None,
}
cpu::apply_operation(self.op().clone(), dst).ok()
}

fn resolve_inner(self, debug: bool) -> Result<Tensor, TensorError> {
Expand Down
Loading