This library is work in progress!
Composable data validation, coercion and processing in Ruby. Takes over from https://github.com/ismasan/parametric
This library takes ideas from the excellent https://dry-rb.org ecosystem, with some of the features offered by Dry-Types, Dry-Schema, Dry-Struct. However, I'm aiming at a subset of the functionality with a (hopefully) smaller API surface and fewer concepts, focusing on lessons learned after using Parametric in production for many years.
If you're after raw performance and versatility I strongly recommend you use the Dry gems.
For a description of the core architecture you can read this article.
Some use cases in the examples directory
Install in your environment with gem install plumb
, or in your Gemfile
with
gem 'plumb'
Include base types in your own namespace:
module Types
# Include Plumb base types, such as String, Integer, Boolean
include Plumb::Types
# Define your own types
Email = String[/@/]
end
# Use them
result = Types::String.resolve("hello")
result.valid? # true
result.errors # nil
result = Types::Email.resolve("foo")
result.valid? # false
result.errors # ""
Note that this is not mandatory. You can also work with the Plumb::Types
module directly, ex. Plumb::Types::String
Use #[]
to make your types match a class.
module Types
include Plumb::Types
String = Any[::String]
Integer = Any[::Integer]
end
Types::String.parse("hello") # => "hello"
Types::String.parse(10) # raises "Must be a String" (Plumb::ParseError)
Plumb ships with basic types already defined, such as Types::String
and Types::Integer
. See the full list below.
The #[]
method is not just for classes. It works with anything that responds to #===
# Match against a regex
Email = Types::String[/@/] # ie Types::Any[String][/@/]
Email.parse('hello') # fails
Email.parse('[email protected]') # '[email protected]'
# Or a Range
AdultAge = Types::Integer[18..]
AdultAge.parse(20) # 20
AdultAge.parse(17) # raises "Must be within 18.."" (Plumb::ParseError)
# Or literal values
Twenty = Types::Integer[20]
Twenty.parse(20) # 20
Twenty.parse(21) # type error
It can be combined with other methods. For example to cast strings as integers, but only if they look like integers.
StringToInt = Types::String[/^\d+$/].transform(::Integer, &:to_i)
StringToInt.parse('100') # => 100
StringToInt.parse('100lol') # fails
#resolve
takes an input value and returns a Result::Valid
or Result::Invalid
result = Types::Integer.resolve(10)
result.valid? # true
result.value # 10
result = Types::Integer.resolve('10')
result.valid? # false
result.value # '10'
result.errors # 'must be an Integer'
#parse
takes an input value and returns the parsed/coerced value if successful. or it raises an exception if failed.
Types::Integer.parse(10) # 10
Types::Integer.parse('10') # raises Plumb::ParseError
Some built-in types such as Types::Array
and Types::Hash
allow defininig array or hash data structures composed of other types.
# A user hash
User = Types::Hash[name: Types::String, email: Email, age: AdultAge]
# An array of User hashes
Users = Types::Array[User]
joe = User.parse({ name: 'Joe', email: '[email protected]', age: 20}) # returns valid hash
Users.parse([joe]) # returns valid array of user hashes
More about Types::Hash and Types::Array. There's also tuples, hash maps, data structs and streams, and it's possible to create your own composite types.
At the core, Plumb types are little Railway-oriented pipelines that can be composed together with AND, OR and NOT semantics. Everything else builds on top of these two ideas.
Email = Types::String[/@/]
# You can compose procs and lambdas, or other types.
Greeting = Email >> ->(result) { result.valid("Your email is #{result.value}") }
Greeting.parse('[email protected]') # "Your email is [email protected]"
Similar to Ruby's built-in function composition, #>>
pipes the output of a "type" to the input of the next type. However, if a type returns an "invalid" result, the chain is halted there and subsequent steps are never run.
In other words, A >> B
means "if A succeeds, pass its result to B. Otherwise return A's failed result."
A | B
means "if A returns a valid result, return that. Otherwise try B with the original input."
StringOrInt = Types::String | Types::Integer
StringOrInt.parse('hello') # "hello"
StringOrInt.parse(10) # 10
StringOrInt.parse({}) # raises Plumb::ParseError
Custom default value logic for non-emails
EmailOrDefault = Greeting | Types::Static['no email']
EmailOrDefault.parse('[email protected]') # "Your email is [email protected]"
EmailOrDefault.parse('nope') # "no email"
Combine #>>
and #|
to compose branching workflows, or types that accept and output several possible data types.
((A >> B) | C | D) >> E)
This more elaborate example defines a combination of types which, when composed together with >>
and |
, can coerce strings or integers into Money instances with currency. It also shows some of the built-in policies or helpers.
require 'money'
module Types
include Plumb::Types
# Match any Money instance
Money = Any[::Money]
# Transform Integers into Money instances
IntToMoney = Integer.transform(::Money) { |v| ::Money.new(v, 'USD') }
# Transform integer-looking Strings into Integers
StringToInt = String.match(/^\d+$/).transform(::Integer, &:to_i)
# Validate that a Money instance is USD
USD = Money.check { |amount| amount.currency.code == 'UDS' }
# Exchange a non-USD Money instance into USD
ToUSD = Money.transform(::Money) { |amount| amount.exchange_to('USD') }
# Compose a pipeline that accepts Strings, Integers or Money and returns USD money.
FlexibleUSD = (Money | ((Integer | StringToInt) >> IntToMoney)) >> (USD | ToUSD)
end
FlexibleUSD.parse('1000') # Money(USD 10.00)
FlexibleUSD.parse(1000) # Money(USD 10.00)
FlexibleUSD.parse(Money.new(1000, 'GBP')) # Money(USD 15.00)
You can see more use cases in the examples directory
Types::Value
Types::Array
Types::True
Types::Symbol
Types::Boolean
Types::Interface
Types::False
Types::Tuple
Types::Any
Types::Static
Types::Undefined
Types::Nil
Types::Integer
Types::Numeric
Types::String
Types::Hash
Types::UUID::V4
Types::Email
Types::Date
Types::Time
Types::URI::Generic
Types::URI::HTTP
Types::URI::File
Types::Lax::Integer
Types::Lax::String
Types::Lax::Symbol
Types::Forms::Boolean
Types::Forms::Nil
Types::Forms::True
Types::Forms::False
Types::Forms::Date
Types::Forms::Time
Types::Forms::URI::Generic
Types::Forms::URI::HTTP
Types::Forms::URI::File
TODO: datetime, others.
Policies are helpers that encapsulate common compositions. Plumb ships with some handy ones, listed below, and you can also define your own.
Checks that the value is not blank (""
if string, []
if array, {}
if Hash, or nil
)
Types::String.present.resolve('') # Failure with errors
Types::Array[Types::String].resolve([]) # Failure with errors
Allow nil
values.
nullable_str = Types::String.nullable
nullable_srt.parse(nil) # nil
nullable_str.parse('hello') # 'hello'
nullable_str.parse(10) # ParseError
Note that this just encapsulates the following composition:
nullable_str = Types::String | Types::Nil
Negates a type.
NotEmail = Types::Email.not
NotEmail.parse('hello') # "hello"
NotEmail.parse('[email protected]') # error
#not
can also be given a type as argument, which might read better:
Types::Any.not(nil)
Types::Any.not(Types::Email)
Finally, you can use Types::Not
for the same effect.
NotNil = Types::Not[nil]
NotNil.parse(1) # 1
NotNil.parse('hello') # 'hello'
NotNil.parse(nil) # error
Sets allowed options for value.
type = Types::String.options(['a', 'b', 'c'])
type.resolve('a') # Valid
type.resolve('x') # Failure
For arrays, it checks that all elements in array are included in options.
type = Types::Array.options(['a', 'b'])
type.resolve(['a', 'a', 'b']) # Valid
type.resolve(['a', 'x', 'b']) # Failure
Transform value. Requires specifying the resulting type of the value after transformation.
StringToInt = Types::String.transform(Integer) { |value| value.to_i }
# Same as
StringToInt = Types::String.transform(Integer, &:to_i)
StringToInteger.parse('10') # => 10
#invoke
builds a Step that will invoke one or more methods on the value.
StringToInt = Types::String.invoke(:to_i)
StringToInt.parse('100') # 100
FilteredHash = Types::Hash.invoke(:except, :foo, :bar)
FilteredHash.parse(foo: 1, bar: 2, name: 'Joe') # { name: 'Joe' }
# It works with blocks
Evens = Types::Array[Integer].invoke(:filter, &:even?)
Evens.parse([1,2,3,4,5]) # [2, 4]
# Same as
Evens = Types::Array[Integer].transform(Array) {|arr| arr.filter(&:even?) }
Passing an array of Symbol method names will build a chain of invocations.
UpcaseToSym = Types::String.invoke(%i[downcase to_sym])
UpcaseToSym.parse('FOO_BAR') # :foo_bar
Note, as opposed to #transform
, this helper does not register a type in #metadata[:type]
, which can be valuable for introspection or documentation (ex. JSON Schema).
Also, there's no definition-time checks that the method names are actually supported by the input values.
type = Types::Array.invoke(:strip) # This is fine here
type.parse([1, 2]) # raises NoMethodError because Array doesn't respond to #strip
Use with caution.
Default value when no value given (ie. when key is missing in Hash payloads. See Types::Hash
below).
str = Types::String.default('nope'.freeze)
str.parse() # 'nope'
str.parse('yup') # 'yup'
Note that this is syntax sugar for:
# A String, or if it's Undefined pipe to a static string value.
str = Types::String | (Types::Undefined >> Types::Static['nope'.freeze])
Meaning that you can compose your own semantics for a "default" value.
Example when you want to apply a default when the given value is nil
.
str = Types::String | (Types::Nil >> Types::Static['nope'.freeze])
str.parse(nil) # 'nope'
str.parse('yup') # 'yup'
Same if you want to apply a default to several cases.
str = Types::String | ((Types::Nil | Types::Undefined) >> Types::Static['nope'.freeze])
Build a custom object or class.
User = Data.define(:name)
UserType = Types::String.build(User)
UserType.parse('Joe') # #<data User name="Joe">
It takes an argument for a custom factory method on the object constructor.
# https://github.com/RubyMoney/monetize
require 'monetize'
StringToMoney = Types::String.build(Monetize, :parse)
money = StringToMoney.parse('£10,300.00') # #<Money fractional:1030000 currency:GBP>
You can also pass a block
StringToMoney = Types::String.build(Money) { |value| Monetize.parse(value) }
Note that this case is identical to #transform
with a block.
StringToMoney = Types::String.transform(Money) { |value| Monetize.parse(value) }
Pass the value through an arbitrary validation
type = Types::String.check('must start with "Role:"') { |value| value.start_with?('Role:') }
type.parse('Role: Manager') # 'Role: Manager'
type.parse('Manager') # fails
Constrain a type to a specific value. Compares with #==
hello = Types::String.value('hello')
hello.parse('hello') # 'hello'
hello.parse('bye') # fails
hello.parse(10) # fails 'not a string'
All scalar types support this:
ten = Types::Integer.value(10)
A type that always returns a valid, static value, regardless of input.
ten = Types::Integer.static(10)
ten.parse(10) # => 10
ten.parse(100) # => 10
ten.parse('hello') # => 10
ten.parse() # => 10
ten.metadata[:type] # => Integer
Useful for data structures where some fields shouldn't change. Example:
CreateUserEvent = Types::Hash[
type: Types::String.static('CreateUser'),
name: String,
age: Integer
]
Note that the value must be of the same type as the starting step's target type.
Types::Integer.static('nope') # raises ArgumentError
This usage is similar as using Types::Static['hello']
directly.
This helper is shorthand for the following composition:
Types::Static[value] >> step
This means that validations and coercions in the original step are still applied to the static value.
ten = Types::Integer[100..].static(10)
ten.parse # => Plumb::ParseError "Must be within 100..."
So, normally you'd only use this attached to primitive types without further processing (but your use case may vary).
Passing a proc will evaluate the proc on every invocation. Use this for generated values.
random_number = Types::Numeric.generate { rand }
random_number.parse # 0.32332
random_number.parse('foo') # 0.54322 etc
Note that the type of generated value must match the initial step's type, validated at invocation.
random_number = Types::String.generate { rand } # this won't raise an error here
random_number.parse # raises Plumb::ParseError because `rand` is not a String
You can also pass any #call() => Object
interface as a generator, instead of a proc.
Add metadata to a type
# A new type with metadata
type = Types::String.metadata(description: 'A long text')
# Read a type's metadata
type.metadata[:description] # 'A long text'
#metadata
combines keys from type compositions.
type = Types::String.metadata(description: 'A long text') >> Types::String.match(/@/).metadata(note: 'An email address')
type.metadata[:description] # 'A long text'
type.metadata[:note] # 'An email address'
#metadata
also computes the target type.
Types::String.metadata[:type] # String
Types::String.transform(Integer, &:to_i).metadata[:type] # Integer
# Multiple target types for unions
(Types::String | Types::Integer).metadata[:type] # [String, Integer]
TODO: document custom visitors.
There's some other built-in "policies" that can be used via the #policy
method. Helpers such as #default
and #present
are shortcuts for this and can also be used via #policy(default: 'Hello')
or #policy(:present)
See custom policies for how to define your own policies.
Similar to Types::Interface
, this is a quick way to assert that a value supports one or more methods.
List = Types::Any.policy(respond_to: :each)
# or
List = Types::Any.policy(respond_to: [:each, :[], :size)
The opposite of #options
, this policy validates that the value is not included in a list.
Name = Types::String.policy(excluded_from: ['Joe', 'Joan'])
Works for any value that responds to #size
and validates that the value's size matches the argument.
LimitedArray = Types::Array[String].policy(size: 10)
LimitedString = Types::String.policy(size: 10)
LimitedSet = Types::Any[Set].policy(size: 10)
The size is matched via #===
, so ranges also work.
Password = Types::String.policy(size: 10..20)
Splits string values by a separator (default: ,
).
CSVLine = Types::String.split
CSVLine.parse('a,b,c') # => ['a', 'b', 'c']
# Or, with custom separator
CSVLine = Types::String.split(/\s*;\s*/)
CSVLine.parse('a;b;c') # => ['a', 'b', 'c']
Wraps a step's execution, rescues a specific exception and returns an invalid result.
Useful for turning a 3rd party library's exception into an invalid result that plays well with Plumb's type compositions.
Example: this is how Types::Forms::Date
uses the :rescue
policy to parse strings with Date.parse
and turn Date::Error
exceptions into Plumb errors.
# Accept a string that can be parsed into a Date
# via Date.parse
# If Date.parse raises a Date::Error, return a Result::Invalid with
# the exception's message as error message.
type = Types::String
.build(::Date, :parse)
.policy(:rescue, ::Date::Error)
type.resolve('2024-02-02') # => Result::Valid with Date object
type.resolve('2024-') # => Result::Invalid with error message
Use this for objects that must respond to one or more methods.
Iterable = Types::Interface[:each, :map]
Iterable.parse([1,2,3]) # => [1,2,3]
Iterable.parse(10) # => raises error
This can be useful combined with case
statements, too:
value = [1,2,3]
case value
when Iterable
# do something with array
when Stringable
# do something with string
when Readable
# do something with IO or similar
end
TODO: make this a bit more advanced. Check for method arity.
Employee = Types::Hash[
name: Types::String.present,
age?: Types::Lax::Integer,
role: Types::String.options(%w[product accounts sales]).default('product')
]
Company = Types::Hash[
name: Types::String.present,
employees: Types::Array[Employee]
]
result = Company.resolve(
name: 'ACME',
employees: [
{ name: 'Joe', age: 40, role: 'product' },
{ name: 'Joan', age: 38, role: 'engineer' }
]
)
result.valid? # true
result = Company.resolve(
name: 'ACME',
employees: [{ name: 'Joe' }]
)
result.valid? # false
result.errors[:employees][0][:age] # ["must be a Numeric"]
Note that you can use primitives as hash field definitions.
User = Types::Hash[name: String, age: Integer]
Or to validate specific values:
Joe = Types::Hash[name: 'Joe', age: Integer]
Or to validate against any #===
interface:
Adult = Types::Hash[name: String, age: (18..)]
# Same as
Adult = Types::Hash[name: Types::String, age: Types::Integer[18..]]
If you want to validate literal values, pass a Types::Value
Settings = Types::Hash[age_range: Types::Value[18..]]
Settings.parse(age_range: (18..)) # Valid
Settings.parse(age_range: (20..30)) # Invalid
A Types::Static
value will always resolve successfully to that value, regardless of the original payload.
User = Types::Hash[name: Types::Static['Joe'], age: Integer]
User.parse(name: 'Rufus', age: 34) # Valid {name: 'Joe', age: 34}
Keys suffixed with ?
are marked as optional and its values will only be validated and coerced if the key is present in the input hash.
User = Types::Hash[
age?: Integer,
name: String
]
User.parse(age: 20, name: 'Joe') # => Valid { age: 20, name: 'Joe' }
User.parse(age: '20', name: 'Joe') # => Invalid, :age is not an Integer
User.parse(name: 'Joe') #=> Valid { name: 'Joe' }
Note that defaults are not applied to optional keys that are missing.
Types::Hash[
age?: Types::Integer.default(10), # does not apply default if key is missing
name: Types::String.default('Joe') # does apply default if key is missing.
]
Use Types::Hash#+
to merge two definitions. Keys in the second hash override the first one's.
User = Types::Hash[name: Types::String, age: Types::Integer]
Employee = Types::Hash[name: Types::String, company: Types::String]
StaffMember = User + Employee # Hash[:name, :age, :company]
Use Types::Hash#&
to produce a new Hash definition with keys present in both.
intersection = User & Employee # Hash[:name]
Use #tagged_by
to resolve what definition to use based on the value of a common key.
NameUpdatedEvent = Types::Hash[type: 'name_updated', name: Types::String]
AgeUpdatedEvent = Types::Hash[type: 'age_updated', age: Types::Integer]
Events = Types::Hash.tagged_by(
:type,
NameUpdatedEvent,
AgeUpdatedEvent
)
Events.parse(type: 'name_updated', name: 'Joe') # Uses NameUpdatedEvent definition
Use #inclusive
to preserve input keys not defined in the hash schema.
hash = Types::Hash[age: Types::Lax::Integer].inclusive
# Only :age, is coerced and validated, all other keys are preserved as-is
hash.parse(age: '30', name: 'Joe', last_name: 'Bloggs') # { age: 30, name: 'Joe', last_name: 'Bloggs' }
This can be useful if you only care about validating some fields, or to assemble different front and back hashes. For example a client-facing one that validates JSON or form data, and a backend one that runs further coercions or domain validations on some keys.
# Front-end definition does structural validation
Front = Types::Hash[price: Integer, name: String, category: String]
# Turn an Integer into a Money instance
IntToMoney = Types::Integer.build(Money)
# Backend definition turns :price into a Money object, leaves other keys as-is
Back = Types::Hash[price: IntToMoney].inclusive
# Compose the pipeline
InputHandler = Front >> Back
InputHandler.parse(price: 100_000, name: 'iPhone 15', category: 'smartphones')
# => { price: #<Money fractional:100000 currency:GBP>, name: 'iPhone 15', category: 'smartphone' }
The #filtered
modifier returns a valid Hash with the subset of values that were valid, instead of failing the entire result if one or more values are invalid.
User = Types::Hash[name: String, age: Integer].filtered
User.parse(name: 'Joe', age: 40) # => { name: 'Joe', age: 40 }
User.parse(name: 'Joe', age: 'nope') # => { name: 'Joe' }
You can also use Hash syntax to define a hash map with specific types for all keys and values:
currencies = Types::Hash[Types::Symbol, Types::String]
currencies.parse(usd: 'USD', gbp: 'GBP') # Ok
currencies.parse('usd' => 'USD') # Error. Keys must be Symbols
Like other types, hash maps accept primitive types as keys and values:
currencies = Types::Hash[Symbol, String]
And any #===
interface as values, too:
names_and_emails = Types::Hash[String, /\w+@\w+/]
names_and_emails.parse('Joe' => '[email protected]', 'Rufus' => 'rufus')
Use Types::Value
to validate specific values (using #==
)
names_and_ones = Types::Hash[String, Types::Integer.value(1)]
Calling the #filtered
modifier on a Hash Map makes it return a sub set of the keys and values that are valid as per the key and value type definitions.
# Filter the ENV for all keys starting with S3_*
S3Config = Types::Hash[/^S3_\w+/, Types::Any].filtered
S3Config.parse(ENV.to_h) # { 'S3_BUCKET' => 'foo', 'S3_REGION' => 'us-east-1' }
names = Types::Array[Types::String.present]
names_or_ages = Types::Array[Types::String.present | Types::Integer[21..]]
Arrays support primitive classes, or any #===
interface:
strings = Types::Array[String]
emails = Types::Array[/@/]
# Similar to
emails = Types::Array[Types::String[/@/]]
Prefer the latter (Types::Array[Types::String[/@/]]
), as that first validates that each element is a String
before matching against the regular expression.
Use Types::Array#concurrent
to process array elements concurrently (using Concurrent Ruby for now).
ImageDownload = Types::URL >> ->(result) {
resp = HTTP.get(result.value)
if (200...300).include?(resp.status)
result.valid(resp.body)
else
result.invalid(error: resp.status)
end
}
Images = Types::Array[ImageDownload].concurrent
# Images are downloaded concurrently and returned in order.
Images.parse(['https://images.com/1.png', 'https://images.com/2.png'])
See the concurrent downloads example.
TODO: pluggable concurrency engines (Async?)
Turn an Array definition into an enumerator that yields each element wrapped in Result::Valid
or Result::Invalid
.
See Types::Stream
below for more.
The #filtered
modifier makes an array definition return a subset of the input array where the values are valid, as per the array's element type.
j_names = Types::Array[Types::String[/^j/]].filtered
j_names.parse(%w[james ismael joe toby joan isabel]) # ["james", "joe", "joan"]
Status = Types::Symbol.options(%i[ok error])
Result = Types::Tuple[Status, Types::String]
Result.parse([:ok, 'all good']) # [:ok, 'all good']
Result.parse([:ok, 'all bad', 'nope']) # type error
Note that literal values can be used too.
Ok = Types::Tuple[:ok, nil]
Error = Types::Tuple[:error, Types::String.present]
Status = Ok | Error
... Or any #===
interface
NameAndEmail = Types::Tuple[String, /@/]
As before, use Types::Value
to check against literal values using #==
NameAndRegex = Types::Tuple[String, Types::Value[/@/]]
Types::Stream
defines an enumerator that validates/coerces each element as it iterates.
This example streams a CSV file and validates rows as they are consumed.
require 'csv'
Row = Types::Tuple[Types::String.present, Types:Lax::Integer]
Stream = Types::Stream[Row]
data = CSV.new(File.new('./big-file.csv')).each # An Enumerator
# stream is an Enumerator that yields rows wrapped in[Result::Valid] or [Result::Invalid]
stream = Stream.parse(data)
stream.each.with_index(1) do |result, line|
if result.valid?
p result.value
else
p ["row at line #{line} is invalid: ", result.errors]
end
end
See a more complete the CSV Stream example
Use #filtered
to turn a Types::Stream
into a stream that only yields valid elements.
ValidElements = Types::Stream[Row].filtered
ValidElements.parse(data).each do |valid_row|
p valid_row
end
A Types::Array
definition can be turned into a stream.
Arr = Types::Array[Integer]
Str = Arr.stream
Str.parse(data).each do |row|
row.valid?
row.errors
row.value
end
Types::Data
provides a superclass to define inmutable structs or value objects with typed / coercible attributes.
The []
syntax is a short-hand for struct definition.
Like Plumb::Types::Hash
, suffixing a key with ?
makes it optional.
Person = Types::Data[name: String, age?: Integer]
person = Person.new(name: 'Jane')
This syntax creates subclasses too.
# Subclass Person with and redefine the :age type.
Adult = Person[age?: Types::Integer[18..]]
These classes can be instantiated normally, and expose #valid?
and #error
person = Person.new(name: 'Joe')
person.name # 'Joe'
person.valid? # false
person.errors[:age] # 'must be an integer'
Data structs can also be defined from Types::Hash
instances.
PersonHash = Types::Hash[name: String, age?: Integer]
PersonStruct = Types::Data[PersonHash]
Note that these instances cannot be mutated (there's no attribute setters), but they can be copied with partial attributes with #with
another_person = person.with(age: 20)
This syntax allows defining struct classes with typed attributes, including nested structs.
class Person < Types::Data
attribute :name, Types::String.present
attribute :age, Types::Integer
end
It supports nested attributes:
class Person < Types::Data
attribute :friend do
attribute :name, String
end
end
person = Person.new(friend: { name: 'John' })
person.friend_count # 1
Or arrays of nested attributes:
class Person < Types::Data
attribute :friends, Types::Array do
atrribute :name, String
end
# Custom methods like any other class
def friend_count = friends.size
end
person = Person.new(friends: [{ name: 'John' }])
Or use struct classes defined separately:
class Company < Types::Data
attribute :name, String
end
class Person < Types::Data
# Single nested struct
attribute :company, Company
# Array of nested structs
attribute :companies, Types::Array[Company]
end
Arrays and other types support composition and helpers. Ex. #default
.
attribute :companies, Types::Array[Company].default([].freeze)
Passing a named struct class AND a block will subclass the struct and extend it with new attributes:
attribute :company, Company do
attribute :address, String
end
The same works with arrays:
attribute :companies, Types::Array[Company] do
attribute :address, String
end
Note that this does NOT work with union'd or piped structs.
attribute :company, Company | Person do
attribute :things, [] # Same as attribute :things, Types::Array
attribute :numbers, [Integer] # Same as attribute :numbers, Types::Array[Integer]
attribute :people, [Person] # same as attribute :people, Types::Array[Person]
attribute :friends, [Person] do # same as attribute :friends, Types::Array[Person] do...
attribute :phone_number, Integer
end
Note that, if you want to match an attribute value against a literal array, you need to use #value
attribute :one_two_three, Types::Array.value[[1, 2, 3]])
Using attribute?
allows for optional attributes. If the attribute is not present, these attribute values will be nil
attribute? :company, Company
Data structs can inherit from other structs. This is useful for defining a base struct with common attributes.
class BasePerson < Types::Data
attribute :name, String
end
class Person < BasePerson
attribute :age, Integer
end
#==
is implemented to compare attributes, recursively.
person1 = Person.new(name: 'Joe', age: 20)
person2 = Person.new(name: 'Joe', age: 20)
person1 == person2 # true
Types::Data
supports all the composition operators and helpers.
Note however that, once you wrap a struct in a composition, you can't instantiate it with .new
anymore (but you can still use #parse
or #resolve
like any other Plumb type).
Person = Types::Data[name: String]
Animal = Types::Data[species: String]
# Compose with |
Being = Person | Animal
Being.parse(name: 'Joe') # <Person [valid] name: 'Joe'>
# Compose with other types
Beings = Types::Array[Person | Animal]
# Default
Payload = Types::Hash[
being: Being.default(Person.new(name: 'Joe Bloggs'))
]
By default Types::Data
classes are inmutable, but you can define attribute writers to allow for mutation using the writer: true
option.
class DBConfig < Types::Data
attribute :host, Types::String.default('localhost'), writer: true
end
class Config < Types::Data
attribute :host, Types::Forms::URI::HTTP, writer: true
attribute :port, Types::Integer.default(80), writer: true
# Nested structs can have writers too
attribute :db, DBConfig.default(DBConfig.new)
end
config = Config.new
config.host = 'http://localhost'
config.db.host = 'db.local'
config.valid? # true
config.errors # {}
You can use #defer
. See recursive types.
Person = Types::Data[
name: String,
friend?: Types::Any.defer { Person }
]
person = Person.new(name: 'Joe', friend: { name: 'Joan'})
person.friend.name # 'joan'
person.friend.friend # nil
Plumb::Pipeline
offers a sequential, step-by-step syntax for composing processing steps, as well as a simple middleware API to wrap steps for metrics, logging, debugging, caching and more. See the command objects example for a worked use case.
All plumb steps have a #pipeline
helper.
User = Types::Data[name: String, age: Integer]
CreateUser = User.pipeline do |pl|
# Add steps as #call(Result) => Result interfaces
pl.step ValidateUser.new
# Or as procs
pl.step do |result|
Logger.info "We have a valid user #{result.value}"
result
end
# Or as other Plumb steps
pl.step User.transform(User) { |user| user.with(name: user.name.upcase) }
pl.step do |result|
DB.create(result.value)
end
end
# Use normally as any other Plumb step
result = CreateUser.resolve(name: 'Joe', age: 40)
# result.valid?
# result.errors
# result.value => User
Pipelines are Plumb steps, so they can be composed further.
IsJoe = User.check('must be named joe') { |user|
result.value.name == 'Joe'
}
CreateIfJoe = IsJoe >> CreateUser
Use #around
in a pipeline definition to add a middleware step that wraps all other steps registered.
# The #around interface is #call(Step, Result::Valid) => Result::Valid | Result::Invalid
StepLogger = proc do |step, result|
Logger.info "Processing step #{step}"
step.call(result)
end
CreateUser = User.pipeline do |pl|
# Around middleware will wrap all other steps registered below
pl.around StepLogger
pl.step ValidateUser.new
pl.step ...etc
end
Note that order matters: an around step will only wrap steps registered after it.
# This step will not be wrapped by StepLogger
pl.step Step1
pl.around StepLogger
# This step WILL be wrapped
pl.step Step2
Like regular steps, around
middleware can be a class, an instance, a proc, or anything that implements the middleware interface.
# As class instance
# pl.around StepLogger.new(:warn)
class StepLogger
def initialize(level = :info)
@level = level
end
def call(step, result)
Logger.send(@level) "Processing step #{step}"
step.call(result)
end
end
# As proc
pl.around do |step, result|
Logger.info "Processing step #{step}"
step.call(result)
end
Plumb::Pipeline
can also be used on its own, sub-classed, and it can take class-level around
middleware.
class LoggedPipeline < Plumb::Pipeline
# class-level midleware will be inherited by sub-classes
around StepLogger
end
# Subclass inherits class-level middleware stack,
# and it can also add its own class or instance-level middleware
class ChildPipeline < LoggedPipeline
# class-level middleware
around Telemetry.new
end
# Instantiate and add instance-level middleware
pipe = ChildPipeline.new do |pl|
pl.around NotifyErrors
pl.step Step1
pl.step Step2
end
Sub-classing Plumb::Pipeline
can be useful to add helpers or domain-specific functionality
class DebuggablePipeline < LoggedPipeline
# Use #debug! for inserting a debugger between steps
def debug!
step do |result|
debugger
result
end
end
end
pipe = DebuggablePipeline.new do |pl|
pl.step Step1
pl.debug!
pl.step Step2
end
Pipelines are full Plumb steps, so they can themselves be used as steps.
Pipe1 = DebuggablePipeline.new do |pl|
pl.step Step1
pl.step Step2
end
Pipe2 = DebuggablePipeline.new do |pl|
pl.step Pipe1 # <= A pipeline instance as step
pl.step Step3
end
TODO
You can use a proc to defer evaluation of recursive definitions.
LinkedList = Types::Hash[
value: Types::Any,
next: Types::Nil | proc { |result| LinkedList.(result) }
]
LinkedList.parse(
value: 1,
next: {
value: 2,
next: {
value: 3,
next: nil
}
}
)
You can also use #defer
LinkedList = Types::Hash[
value: Types::Any,
next: Types::Any.defer { LinkedList } | Types::Nil
]
Every Plumb type exposes the following one-method interface:
#call(Result::Valid) => Result::Valid | Result::Invalid
As long as an object implements this interface, it can be composed into Plumb workflows.
The Result::Valid
class has helper methods #valid(value) => Result::Valid
and #invalid(errors:) => Result::Invalid
to facilitate returning valid or invalid values from your own steps.
Piping any #call
object onto Plumb types will wrap your object in a Plumb::Step
with all methods necessary for further composition.
Greeting = Types::String >> ->(result) { result.valid("Hello #{result.value}") }
You can also wrap a proc in Plumb::Step
explicitly.
Greeting = Plumb::Step.new do |result|
result.valid("Hello #{result.value}")
end
Note that this example is not prefixed by Types::String
, so it doesn't first validate that the input is indeed a string.
However, this means that Greeting
is a Plumb::Step
which comes with all the Plumb methods and policies.
# Greeting responds to #>>, #|, #default, #transform, etc etc
LoudGreeting = Greeting.default('no greeting').invoke(:upcase)
Or write a custom class that responds to #call(Result::Valid) => Result::Valid | Result::Invalid
class Greeting
def initialize(gr = 'Hello')
@gr = gr
end
# The Plumb Step interface
# @param result [Plumb::Result::Valid]
# @return [Plumb::Result::Valid, Plumb::Result::Invalid]
def call(result)
result.valid("#{gr} #{result.value}")
end
end
MyType = Types::String >> Greeting.new('Hola')
This is useful when you want to parameterize your custom steps, for example by initialising them with arguments like the example above.
The class above will be wrapped by Plumb::Step
when piped into other steps, but it doesn't support Plumb methods on its own.
Including Plumb::Composable
makes it support all Plumb methods directly.
class Greeting
# This module mixes in Plumb methods such as #>>, #|, #default, #[],
# #transform, #policy, etc etc
include Plumb::Composable
def initialize(gr = 'Hello')
@gr = gr
end
# The Step interface
def call(result)
result.valid("#{gr} #{result.value}")
end
# This is optional, but it allows you to control your object's #inspect
private def _inspect = "Greeting[#{@gr}]"
end
Now you can use your class as a composition starting point directly.
LoudGreeting = Greeting.new('Hola').default('no greeting').invoke(:upcase)
class User
extend Composable
def self.class(result)
# do something here. Perhaps returning a Result with an instance of this class
return result.valid(new)
end
end
This is how Plumb::Types::Data is implemented.
Plumb.policy
can be used to encapsulate common type compositions, or compositions that can be configurable by parameters.
This example defines a :default_if_nil
policy that returns a default if the value is nil
.
Plumb.policy :default_if_nil do |type, default_value|
type | (Types::Nil >> Types::Static[default_value])
end
It can be used for any of your own types.
StringWithDefault = Types::String.policy(default_if_nil: 'nothing here')
StringWithDefault.parse('hello') # 'hello'
StringWithDefault.parse(nil) # 'nothing here'
The #policy
helper supports applying multiply policies.
Types::String.policy(default_if_nil: 'nothing here', size: (10..20))
Use the helper: true
option to register the policy as a method you can call on types directly.
Plumb.policy :default_if_nil, helper: true do |type, default_value|
type | (Types::Nil >> Types::Static[default_value])
end
# Now use #default_if_nil directly
StringWithDefault = Types::String.default_if_nil('nothing here')
Many built-in helpers such as #default
and #options
are implemented as policies. This means that you can overwrite their default behaviour by defining a policy with the same name (use with caution!).
This other example adds a boolean to type metadata.
Plumb.policy :admin, helper: true do |type|
type.metadata(admin: true)
end
# Usage: annotate fields in a schema
AccountName = Types::String.admin
AccountName.metadata # => { type: String, admin: true }
You can use the for_type:
option to define policies that only apply to steps that output certain types. This example is only applicable for types that return Integer
values.
Plumb.policy :multiply_by, for_type: Integer, helper: true do |type, factor|
type.invoke(:*, factor)
end
Doubled = Types::Integer.multiply_by(2)
Doubled.parse(2) # 4
# Trying to apply this policy to a non Integer will raise an exception
DoubledString = Types::String.multiply_by(2) # raises error
for_type
also supports a Symbol for a method name, so that the policy can be applied to any types that support that method.
This example allows the multiply_by
policy to work with any type that can be multiplied (by supporting the :*
method).
Plumb.policy :multiply_by, for_type: :*, helper: true do |type, factor|
type.invoke(:*, factor)
end
# Now it works with anything that can be multiplied.
DoubledNumeric = Types::Numeric.multiply_by(2)
DoubledMoney = Types::Any[Money].multiply_by(2)
You can register a module, class or object with a three-method interface as a policy. This is so that policies can have their own namespace if they need local constants or private methods. For example, this is how the :split
policy for strings is defined.
module SplitPolicy
DEFAULT_SEPARATOR = /\s*,\s*/
def self.call(type, separator = DEFAULT_SEPARATOR)
type.transform(Array) { |v| v.split(separator) }
end
def self.for_type = ::String
def self.helper = false
end
Plumb.policy :split, SplitPolicy
Plumb ships with a JSON schema visitor that compiles a type composition into a JSON Schema Hash. All Plumb types support a #to_json_schema
method.
Payload = Types::Hash[name: String]
Payload.to_json_schema(root: true)
# {
# "$schema"=>"https://json-schema.org/draft-08/schema#",
# "type"=>"object",
# "properties"=>{"name"=>{"type"=>"string"}},
# "required"=>["name"]
# }
The visitor can be used directly, too.
User = Types::Hash[
name: Types::String,
age: Types::Integer[21..]
]
json_schema = Plumb::JSONSchemaVisitor.call(User)
{
'$schema'=>'https://json-schema.org/draft-08/schema#',
'type' => 'object',
'properties' => {
'name' => {'type' => 'string'},
'age' => {'type' =>'integer', 'minimum' => 21}
},
'required' =>['name', 'age']
}
The built-in JSON Schema generator handles most standard types and compositions. You can add or override handlers on a per-type basis with:
Plumb::JSONSchemaVisitor.on(:not) do |node, props|
props.merge('not' => visit(node.step))
end
# Example
type = Types::Decimal.not
schema = Plumb::JSONSchemaVisitor.visit(type) # { 'not' => { 'type' => 'number' } }
You can also register custom classes or types that are wrapped by Plumb steps.
module Types
DateTime = Any[::DateTime]
end
Plumb::JSONSchemaVisitor.on(::DateTime) do |node, props|
props.merge('type' => 'string', 'format' => 'date-time')
end
Types::DateTime.to_json_schema
# {"type"=>"string", "format"=>"date-time"}
- benchmarks and performace. Compare with
Parametric
,ActiveModel::Attributes
,ActionController::StrongParameters
- flesh out
Plumb::Schema
-
Plumb::Struct
- flesh out and document
Plumb::Pipeline
- document custom visitors
- Improve errors, support I18n ?
After checking out the repo, run bin/setup
to install dependencies. Then, run rake spec
to run the tests. You can also run bin/console
for an interactive prompt that will allow you to experiment.
To install this gem onto your local machine, run bundle exec rake install
. To release a new version, update the version number in version.rb
, and then run bundle exec rake release
, which will create a git tag for the version, push git commits and the created tag, and push the .gem
file to rubygems.org.
Bug reports and pull requests are welcome on GitHub at https://github.com/ismasan/plumb.
The gem is available as open source under the terms of the MIT License.