- Jacob Kauffmann
- Jonas Dippel
- Lukas Ruff
- Wojciech Samek
- Gregoire Montavon
- Klaus-Robert Müller
Download the required datasets:
- NIH CXR8: https://academictorrents.com/details/e615d3aebce373f1dc8bd9d11064da55bdadede0
- GitHub COVID-19 image collection: https://github.com/ieee8023/covid-chestxray-dataset
- ImageNet: https://www.image-net.org/download.php
- MVTec-AD: https://www.mvtec.com/company/research/datasets/mvtec-ad
Place the datasets in the data/
directory.
- All experiments are implemented in Python.
- Main dependencies:
torch
,torchvision
,ipython
,matplotlib
,scikit-learn
,scipy
,numpy
,Pillow
,opencv-python-headless
. - Experiments provide individual
requirements.txt
files.
- Navigate to the
radiology/
directory. - Open
covid19.ipynb
withipython
. - Run all cells.
- Results can be found in the cell outputs and the
results/
sub-directory.
- Additional dependency: Snakemake.
- Navigate to the
anomalies/
directory. - Run
snakemake --cores 12
. - Results can be found in the
results/
sub-directory.
- Navigate to the
representation/
directory. - Follow instructions in the README.md file in the respective folder.
- Grégoire Montavon: [email protected]
- Klaus-Robert Müller: [email protected]