- Final update: 2018 Oct
- All right reserved @ Jaewook Kang 2018
The aim of this repository is to introduce a tiny pose estimation tutorial. This pose estimation model is based on single hourglass model.
- Alejandro Newell, Kaiyu Yang, Jia Deng, " Stacked Hourglass Networks for Human Pose Estimation," ECCV 2016. We implement the pose estimation model in Tensorflow.
- Tensorflow
- Single hourglass model
- Human pose estimation
- Inverted bottleneck (Mobilenet v2)
- Tensorflow >=1.9
- Python2 <= 2.7.12
- Python3 <= 3.6.0
- opencv-python >= 3.4.2
- pycocotools == 2.0.0
- Cython == 0.28.4
- tensorpack == 0.8.0
- Tf plot == 0.2.0.dev0
git clone https://github.com/jwkanggist/tf-tiny-pose-estimation
# cd tf-tiny-pose-estimation/
git init
pip install -r requirement.txt
./sh_scripts/install_tensorflow_gpu.sh
For OSX and Ubuntu, we can install pycocotool by pip
- Step 1) Download and install
Microsoft Build Tools 2015
- Step 2) pip install
cocoapi
repository - Step 3) Make
pycocotools
git clone https://github.com/cocodataset/cocoapi
cd PythonAPI
make
- Downloading dataset
Downloading dataset from the AI challenger website and place the dataset on
./dataset
.
- Training
python ./tf_modules/trainer.py
- Monitoring by Tensorboard
tensorboard --logdir ./export/tf_logs
./tfmodules/
├── dataset
│ └── ai_challenger
│
├── export
│ ├── train_setup_log
│ └── tf_logs
│
├── coco_dataload_modules
│ ├── testcodes
│ │ └── test_dataloader.py
│ ├── dataset_augment.py
│ └── dataset_prepare.py
│
├── data_loader.py
├── eval.py
├── model_builder.py
├── model_config.py
├── train_config.py
└── trainer.py
./export/train_setup_log/
: We log and store setup of each training run in this folder../export/tf_logs/run-yyyymmddHHmmss/train/
: We logtensorboard summary
of each training run in this folder../export/tf_logs/run-yyyymmddHHmmss/valid/
: We logtensorboard summary
of each validation run in this folder../export/tf_logs/run-yyyymmddHHmmss/pb_and_ckpt/
: We saveckpt
andpb
files resulting from each training run.
- Jaewook Kang, Human pose estimation 101 with Tensorflow
- Jaewook Kang, Tensorflow Practical Project Configuration
- Issues: report issues, bugs, and request new features
- Pull request
- Email: [email protected]
- Apach License 2.0