-
Notifications
You must be signed in to change notification settings - Fork 19.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' of github.com:keras-team/keras
- Loading branch information
Showing
8 changed files
with
744 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,209 @@ | ||
import numpy as np | ||
import pytest | ||
from absl.testing import parameterized | ||
|
||
from keras import backend | ||
from keras import initializers | ||
from keras import layers | ||
from keras import testing | ||
|
||
|
||
class GroupedQueryAttentionTest(testing.TestCase, parameterized.TestCase): | ||
def test_basics(self): | ||
self.run_layer_test( | ||
layers.GroupedQueryAttention, | ||
init_kwargs={ | ||
"num_query_heads": 2, | ||
"num_key_value_heads": 2, | ||
"head_dim": 2, | ||
}, | ||
input_shape={"query_shape": (2, 8, 16), "value_shape": (2, 4, 16)}, | ||
expected_output_shape=(2, 8, 16), | ||
expected_num_trainable_weights=8, | ||
expected_num_non_trainable_weights=0, | ||
expected_num_seed_generators=0, | ||
expected_num_losses=0, | ||
supports_masking=True, | ||
run_training_check=False, | ||
) | ||
|
||
self.run_layer_test( | ||
layers.GroupedQueryAttention, | ||
init_kwargs={ | ||
"num_query_heads": 2, | ||
"num_key_value_heads": 2, | ||
"head_dim": 2, | ||
"use_bias": False, | ||
"dropout": 0.5, | ||
}, | ||
input_shape={"query_shape": (2, 8, 16), "value_shape": (2, 4, 16)}, | ||
expected_output_shape=(2, 8, 16), | ||
expected_num_trainable_weights=4, | ||
expected_num_non_trainable_weights=0, | ||
expected_num_seed_generators=0, | ||
expected_num_losses=0, | ||
supports_masking=True, | ||
run_training_check=False, | ||
) | ||
|
||
@parameterized.named_parameters( | ||
("without_key_proj_mha", (4, 8), (2, 8), None, 2, 2), | ||
("with_key_proj_mha", (4, 8), (2, 8), (2, 3), 2, 2), | ||
("without_key_proj_gqa", (4, 8), (2, 8), None, 4, 2), | ||
("with_key_proj_gqa", (4, 8), (2, 8), (2, 3), 4, 2), | ||
("without_key_value_proj_mqa", (4, 8), (2, 8), None, 4, 1), | ||
("with_key_value_proj_mqa", (4, 8), (2, 8), (2, 3), 4, 1), | ||
) | ||
def test_compute_output_shape( | ||
self, | ||
query_dims, | ||
value_dims, | ||
key_dims, | ||
num_query_heads, | ||
num_key_value_heads, | ||
): | ||
"""Test computed shape is equal to the layer output's shape.""" | ||
layer = layers.GroupedQueryAttention( | ||
num_query_heads=num_query_heads, | ||
num_key_value_heads=num_key_value_heads, | ||
head_dim=2, | ||
) | ||
batch_size = 7 | ||
query_shape = (batch_size,) + query_dims | ||
value_shape = (batch_size,) + value_dims | ||
key_shape = (batch_size,) + key_dims if key_dims else None | ||
|
||
query = np.ones(query_shape) | ||
value = np.ones(value_shape) | ||
key = np.ones(key_shape) if key_shape else None | ||
output = layer(query=query, value=value, key=key) | ||
comp_output_shape = layer.compute_output_shape( | ||
query_shape, value_shape, key_shape | ||
) | ||
self.assertEqual(output.shape, comp_output_shape) | ||
|
||
@parameterized.named_parameters( | ||
("query_value_dim_mismatch", (2, 4, 8), (2, 2, 7), 2), | ||
("key_value_dim_mismatch", (2, 4, 8), (2, 2, 8), (2, 1, 7)), | ||
) | ||
def test_shape_mismatch_error(self, query_shape, value_shape, key_shape): | ||
"""Test dimension mismatches""" | ||
layer = layers.GroupedQueryAttention( | ||
num_query_heads=4, | ||
num_key_value_heads=4, | ||
head_dim=2, | ||
) | ||
with self.assertRaisesRegex(ValueError, r"must be equal"): | ||
layer.compute_output_shape(query_shape, value_shape, key_shape) | ||
|
||
def test_initializer(self): | ||
# Test with a specified initializer. | ||
layer = layers.GroupedQueryAttention( | ||
num_query_heads=16, | ||
num_key_value_heads=16, | ||
head_dim=64, | ||
kernel_initializer=initializers.TruncatedNormal(stddev=0.02), | ||
) | ||
layer.build((2, 4, 8), (2, 4, 8)) | ||
|
||
# Make sure the sub layers have different kernel init value. | ||
self.assertNotAllClose( | ||
layer._query_dense.kernel, | ||
layer._key_dense.kernel, | ||
) | ||
self.assertNotAllClose( | ||
layer._query_dense.kernel, | ||
layer._value_dense.kernel, | ||
) | ||
self.assertNotAllClose( | ||
layer._query_dense.kernel, | ||
layer._output_dense.kernel, | ||
) | ||
|
||
@pytest.mark.skipif( | ||
backend.backend() == "numpy", | ||
reason="Numpy backend does not support masking.", | ||
) | ||
def test_query_mask_progagation(self): | ||
"""Test automatic propagation of the query's mask.""" | ||
layer = layers.GroupedQueryAttention( | ||
num_query_heads=2, num_key_value_heads=2, head_dim=2 | ||
) | ||
self.assertTrue(layer.supports_masking) | ||
query = np.array([[1, 2, 3, 0, 0], [3, 3, 1, 1, 2], [1, 0, 0, 0, 0]]) | ||
masked_query = layers.Embedding(4, 8, mask_zero=True)(query) | ||
value = np.random.normal(size=(3, 3, 8)) | ||
output = layer(query=masked_query, value=value) | ||
self.assertAllClose(masked_query._keras_mask, output._keras_mask) | ||
|
||
@parameterized.named_parameters(("causal", True), ("not_causal", 0)) | ||
@pytest.mark.skipif( | ||
backend.backend() == "numpy", | ||
reason="Numpy backend does not support masking.", | ||
) | ||
def test_masking(self, use_causal_mask): | ||
"""Test that the value and causal masks are taken into account.""" | ||
layer = layers.GroupedQueryAttention( | ||
num_query_heads=2, num_key_value_heads=2, head_dim=2 | ||
) | ||
query = np.array([[1, 2, 3, 0, 0], [3, 3, 1, 1, 2], [1, 0, 0, 0, 0]]) | ||
masked_query = layers.Embedding(4, 8, mask_zero=True)(query) | ||
value = np.array([[5, 4, 0], [3, 0, 0], [2, 1, 1]]) | ||
masked_value = layers.Embedding(6, 8, mask_zero=True)(value) | ||
output = layer( | ||
query=masked_query, | ||
value=masked_value, | ||
use_causal_mask=use_causal_mask, | ||
) | ||
mask = np.array( | ||
[[[1, 1, 0]] * 3 + [[0, 0, 0]] * 2] | ||
+ [[[1, 0, 0]] * 5] | ||
+ [[[1, 1, 1]] + [[0, 0, 0]] * 4] | ||
).astype(bool) | ||
if use_causal_mask: | ||
mask = mask & np.array( | ||
[[[1, 0, 0], [1, 1, 0]] + [[1, 1, 1]] * 3] | ||
).astype(bool) | ||
del masked_query._keras_mask | ||
del masked_value._keras_mask | ||
output_with_manual_mask = layer( | ||
query=masked_query, value=masked_value, attention_mask=mask | ||
) | ||
self.assertAllClose(output, output_with_manual_mask) | ||
|
||
def test_correctness(self): | ||
query = np.array([[[1.0, 0.0], [0.0, 1.0]]]) | ||
key = np.array([[[0.0, 1.0], [1.0, 0.0]]]) | ||
value = np.array([[[1.0, 2.0], [3.0, 4.0]]]) | ||
|
||
# Setup layer. | ||
num_heads = 2 | ||
key_dim = 2 | ||
layer = layers.MultiHeadAttention( | ||
num_heads=num_heads, | ||
key_dim=key_dim, | ||
) | ||
layer.build(query.shape, key.shape, value.shape) | ||
|
||
# Set layer weights. | ||
kernel = np.identity(key_dim) | ||
# To get an identity kernel we need to add a head dim and repeat on it. | ||
kernel = np.repeat(kernel[:, np.newaxis, :], num_heads, axis=1) | ||
# Zeros for all biases. | ||
bias = np.zeros((2, 2)) | ||
output_bias = np.zeros((2,)) | ||
layer.set_weights([kernel, bias] * 3 + [kernel, output_bias]) | ||
|
||
# Call layer and assert output. | ||
output, scores = layer( | ||
query=query, | ||
value=value, | ||
key=key, | ||
return_attention_scores=True, | ||
) | ||
self.assertAllClose(output, [[[5.679, 5.679], [4.32, 4.32]]], atol=1e-3) | ||
self.assertAllClose( | ||
scores, | ||
[[[[0.33, 0.67], [0.67, 0.33]], [[0.33, 0.67], [0.67, 0.33]]]], | ||
atol=1e-3, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters