Skip to content

Fast computation of Hausdorff distance in Python

License

Notifications You must be signed in to change notification settings

kiakahabro/py-hausdorff

 
 

Repository files navigation

py-hausdorff

Build Status PyPI version PyPI download

Fast computation of Hausdorff distance in Python.

This code implements the algorithm presented in An Efficient Algorithm for Calculating the Exact Hausdorff Distance (DOI: 10.1109/TPAMI.2015.2408351) by Aziz and Hanbury.

Installation

Via PyPI:

pip install hausdorff

Or you can clone this repository and install it manually:

python setup.py install

Example Usage

The main functions is:

hausdorff_distance(np.ndarray[:,:] X, np.ndarray[:,:] Y)

Which computes the Hausdorff distance between the rows of X and Y using the Euclidean distance as metric. It receives the optional argument distance (string or callable), which is the distance function used to compute the distance between the rows of X and Y. In case of string, it could be any of the following: manhattan, euclidean (default), chebyshev and cosine. In case of callable, it should be a numba decorated function (see example below).

Note: The haversine distance is calculated assuming lat, lng coordinate ordering and assumes the first two coordinates of each point are latitude and longitude respectively.

Basic Usage

import numpy as np
from hausdorff import hausdorff_distance

# two random 2D arrays (second dimension must match)
np.random.seed(0)
X = np.random.random((1000,100))
Y = np.random.random((5000,100))

# Test computation of Hausdorff distance with different base distances
print(f"Hausdorff distance test: {hausdorff_distance(X, Y, distance='manhattan')}")
print(f"Hausdorff distance test: {hausdorff_distance(X, Y, distance='euclidean')}")
print(f"Hausdorff distance test: {hausdorff_distance(X, Y, distance='chebyshev')}")
print(f"Hausdorff distance test: {hausdorff_distance(X, Y, distance='cosine')}")

# For haversine, use 2D lat, lng coordinates
def rand_lat_lng(N):
    lats = np.random.uniform(-90, 90, N)
    lngs = np.random.uniform(-180, 180, N)
    return np.stack([lats, lngs], axis=-1)
        
X = rand_lat_lng(100)
Y = rand_lat_lng(250)
print("Hausdorff haversine test: {0}".format( hausdorff_distance(X, Y, distance="haversine") ))

Custom distance function

The distance function is used to calculate the distances between the rows of the input 2-dimensional arrays . For optimal performance, this custom distance function should be decorated with @numba in nopython mode.

import numba
import numpy as np
from math import sqrt
from hausdorff import hausdorff_distance

# two random 2D arrays (second dimension must match)
np.random.seed(0)
X = np.random.random((1000,100))
Y = np.random.random((5000,100))

# write your own crazy custom function here
# this function should take two 1-dimensional arrays as input
# and return a single float value as output.
@numba.jit(nopython=True, fastmath=True)
def custom_dist(array_x, array_y):
    n = array_x.shape[0]
    ret = 0.
    for i in range(n):
        ret += (array_x[i]-array_y[i])**2
    return sqrt(ret)

print(f"Hausdorff custom euclidean test: {hausdorff_distance(X, Y, distance=custom_dist)}")

# a real crazy custom function
@numba.jit(nopython=True, fastmath=True)
def custom_dist(array_x, array_y):
    n = array_x.shape[0]
    ret = 0.
    for i in range(n):
        ret += (array_x[i]-array_y[i])**3 / (array_x[i]**2 + array_y[i]**2 + 0.1)
    return ret

print(f"Hausdorff custom crazy test: {hausdorff_distance(X, Y, distance=custom_dist)}")

About

Fast computation of Hausdorff distance in Python

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.4%
  • Makefile 4.6%