Skip to content

Commit

Permalink
feat: optimize completion model agent (#1364)
Browse files Browse the repository at this point in the history
  • Loading branch information
takatost authored Oct 17, 2023
1 parent 16d80eb commit 07285e5
Show file tree
Hide file tree
Showing 3 changed files with 156 additions and 22 deletions.
2 changes: 1 addition & 1 deletion api/core/agent/agent/multi_dataset_router_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@ def plan(
agent_decision = self.real_plan(intermediate_steps, callbacks, **kwargs)
if isinstance(agent_decision, AgentAction):
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
if isinstance(tool_inputs, dict) and 'query' in tool_inputs and 'chat_history' not in kwargs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
else:
Expand Down
90 changes: 80 additions & 10 deletions api/core/agent/agent/structed_multi_dataset_router_agent.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import re
from typing import List, Tuple, Any, Union, Sequence, Optional, cast

from langchain import BasePromptTemplate
from langchain import BasePromptTemplate, PromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.callbacks.base import BaseCallbackManager
Expand All @@ -12,6 +12,7 @@
from langchain.agents.structured_chat.prompt import PREFIX, SUFFIX

from core.chain.llm_chain import LLMChain
from core.model_providers.models.entity.model_params import ModelMode
from core.model_providers.models.llm.base import BaseLLM
from core.tool.dataset_retriever_tool import DatasetRetrieverTool

Expand Down Expand Up @@ -92,6 +93,10 @@ def plan(
rst = tool.run(tool_input={'query': kwargs['input']})
return AgentFinish(return_values={"output": rst}, log=rst)

if intermediate_steps:
_, observation = intermediate_steps[-1]
return AgentFinish(return_values={"output": observation}, log=observation)

full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)

try:
Expand All @@ -107,6 +112,8 @@ def plan(
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
elif isinstance(tool_inputs, str):
agent_decision.tool_input = kwargs['input']
else:
agent_decision.return_values['output'] = ''
return agent_decision
Expand Down Expand Up @@ -143,6 +150,61 @@ def create_prompt(
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)

@classmethod
def create_completion_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
suffix = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
Question: {input}
Thought: {agent_scratchpad}
"""

tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)

def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> str:
agent_scratchpad = ""
for action, observation in intermediate_steps:
agent_scratchpad += action.log
agent_scratchpad += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"

if not isinstance(agent_scratchpad, str):
raise ValueError("agent_scratchpad should be of type string.")
if agent_scratchpad:
llm_chain = cast(LLMChain, self.llm_chain)
if llm_chain.model_instance.model_mode == ModelMode.CHAT:
return (
f"This was your previous work "
f"(but I haven't seen any of it! I only see what "
f"you return as final answer):\n{agent_scratchpad}"
)
else:
return agent_scratchpad
else:
return agent_scratchpad

@classmethod
def from_llm_and_tools(
cls,
Expand All @@ -160,15 +222,23 @@ def from_llm_and_tools(
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
if model_instance.model_mode == ModelMode.CHAT:
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
else:
prompt = cls.create_completion_prompt(
tools,
prefix=prefix,
format_instructions=format_instructions,
input_variables=input_variables
)
llm_chain = LLMChain(
model_instance=model_instance,
prompt=prompt,
Expand Down
86 changes: 75 additions & 11 deletions api/core/agent/agent/structured_chat.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import re
from typing import List, Tuple, Any, Union, Sequence, Optional
from typing import List, Tuple, Any, Union, Sequence, Optional, cast

from langchain import BasePromptTemplate
from langchain import BasePromptTemplate, PromptTemplate
from langchain.agents import StructuredChatAgent, AgentOutputParser, Agent
from langchain.agents.structured_chat.base import HUMAN_MESSAGE_TEMPLATE
from langchain.callbacks.base import BaseCallbackManager
Expand All @@ -15,6 +15,7 @@

from core.agent.agent.calc_token_mixin import CalcTokenMixin, ExceededLLMTokensLimitError
from core.chain.llm_chain import LLMChain
from core.model_providers.models.entity.model_params import ModelMode
from core.model_providers.models.llm.base import BaseLLM

FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Expand Down Expand Up @@ -184,6 +185,61 @@ def create_prompt(
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)

@classmethod
def create_completion_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
suffix = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
Question: {input}
Thought: {agent_scratchpad}
"""

tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)

def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> str:
agent_scratchpad = ""
for action, observation in intermediate_steps:
agent_scratchpad += action.log
agent_scratchpad += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"

if not isinstance(agent_scratchpad, str):
raise ValueError("agent_scratchpad should be of type string.")
if agent_scratchpad:
llm_chain = cast(LLMChain, self.llm_chain)
if llm_chain.model_instance.model_mode == ModelMode.CHAT:
return (
f"This was your previous work "
f"(but I haven't seen any of it! I only see what "
f"you return as final answer):\n{agent_scratchpad}"
)
else:
return agent_scratchpad
else:
return agent_scratchpad

@classmethod
def from_llm_and_tools(
cls,
Expand All @@ -201,15 +257,23 @@ def from_llm_and_tools(
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
if model_instance.model_mode == ModelMode.CHAT:
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
else:
prompt = cls.create_completion_prompt(
tools,
prefix=prefix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
model_instance=model_instance,
prompt=prompt,
Expand Down

0 comments on commit 07285e5

Please sign in to comment.