generated from learning-process/parallel_programming_course
-
Notifications
You must be signed in to change notification settings - Fork 163
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Хованский Дмитрий. Задача 2. Вариант 16. Ленточная вертикальная схема. #395
Open
Kvoks
wants to merge
8
commits into
learning-process:master
Choose a base branch
from
Kvoks:khovansky_d_ribbon_vertical_scheme
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+837
−0
Open
Changes from all commits
Commits
Show all changes
8 commits
Select commit
Hold shift + click to select a range
df5d791
add task
Kvoks 5d1180a
fix syntax
Kvoks 03cd81c
fix syntax2
Kvoks ab67833
fix syntax3
Kvoks fac94d8
validation fix
Kvoks 84a5647
fix venn
Kvoks 07db75d
fix chastovslava
Kvoks 71f11f2
fix syntax4
Kvoks File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
131 changes: 131 additions & 0 deletions
131
tasks/mpi/khovansky_d_ribbon_vertical_scheme/func_tests/main.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
// Copyright 2024 Khovansky Dmitry | ||
#include <gtest/gtest.h> | ||
|
||
#include <boost/mpi/communicator.hpp> | ||
#include <boost/mpi/environment.hpp> | ||
#include <cstdlib> | ||
#include <ctime> | ||
#include <memory> | ||
#include <random> | ||
#include <vector> | ||
|
||
#include "mpi/khovansky_d_ribbon_vertical_scheme/include/ops_mpi.hpp" | ||
|
||
void khovansky_d_fragmentation(int rows_count, int columns_count, int proc_count, std::vector<int>& rows_per_process, | ||
std::vector<int>& rows_offsets) { | ||
if (proc_count > rows_count) { | ||
for (int i = 0; i < rows_count; ++i) { | ||
rows_offsets[i] = i * columns_count; | ||
rows_per_process[i] = columns_count; | ||
} | ||
for (int i = rows_count; i < proc_count; ++i) { | ||
rows_offsets[i] = -1; | ||
rows_per_process[i] = 0; | ||
} | ||
} else { | ||
int rows_count_per_proc = rows_count / proc_count; | ||
int remainder = rows_count % proc_count; | ||
int offset = 0; | ||
for (int i = 0; i < proc_count; ++i) { | ||
if (remainder > 0) { | ||
rows_per_process[i] = (rows_count_per_proc + 1) * columns_count; | ||
--remainder; | ||
} else { | ||
rows_per_process[i] = rows_count_per_proc * columns_count; | ||
} | ||
rows_offsets[i] = offset; | ||
offset += rows_per_process[i]; | ||
} | ||
} | ||
} | ||
|
||
TEST(khovansky_d_ribbon_vertical_scheme_mpi, procs_more_than_rows) { | ||
int rows_count = 3; | ||
int columns_count = 5; | ||
int proc_count = 6; | ||
|
||
std::vector<int> rows_per_process(proc_count, 0); | ||
std::vector<int> rows_offsets(proc_count, 0); | ||
|
||
khovansky_d_fragmentation(rows_count, columns_count, proc_count, rows_per_process, rows_offsets); | ||
|
||
std::vector<int> expected_rows_per_process = {5, 5, 5, 0, 0, 0}; | ||
std::vector<int> expected_rows_offsets = {0, 5, 10, -1, -1, -1}; | ||
|
||
EXPECT_EQ(rows_per_process, expected_rows_per_process); | ||
EXPECT_EQ(rows_offsets, expected_rows_offsets); | ||
} | ||
|
||
TEST(khovansky_d_ribbon_vertical_scheme_mpi, procs_less_than_rows) { | ||
int rows_count = 10; | ||
int columns_count = 3; | ||
int proc_count = 4; | ||
|
||
std::vector<int> rows_per_process(proc_count, 0); | ||
std::vector<int> rows_offsets(proc_count, 0); | ||
|
||
khovansky_d_fragmentation(rows_count, columns_count, proc_count, rows_per_process, rows_offsets); | ||
|
||
std::vector<int> expected_rows_per_process = {9, 9, 6, 6}; | ||
std::vector<int> expected_rows_offsets = {0, 9, 18, 24}; | ||
|
||
EXPECT_EQ(rows_per_process, expected_rows_per_process); | ||
EXPECT_EQ(rows_offsets, expected_rows_offsets); | ||
} | ||
|
||
TEST(khovansky_d_ribbon_vertical_scheme_mpi, procs_equal_rows) { | ||
int rows_count = 5; | ||
int columns_count = 3; | ||
int proc_count = 5; | ||
|
||
std::vector<int> rows_per_process(proc_count, 0); | ||
std::vector<int> rows_offsets(proc_count, 0); | ||
|
||
khovansky_d_fragmentation(rows_count, columns_count, proc_count, rows_per_process, rows_offsets); | ||
|
||
std::vector<int> expected_rows_per_process = {3, 3, 3, 3, 3}; | ||
std::vector<int> expected_rows_offsets = {0, 3, 6, 9, 12}; | ||
|
||
EXPECT_EQ(rows_per_process, expected_rows_per_process); | ||
EXPECT_EQ(rows_offsets, expected_rows_offsets); | ||
} | ||
|
||
TEST(khovansky_d_ribbon_vertical_scheme_mpi, standart_matrix) { | ||
boost::mpi::communicator world; | ||
|
||
int rows_count = 3; | ||
int columns_count = 3; | ||
std::vector<int> input_matrix; | ||
std::vector<int> input_vector; | ||
std::vector<int> output_vector; | ||
|
||
std::shared_ptr<ppc::core::TaskData> taskDataPar = std::make_shared<ppc::core::TaskData>(); | ||
|
||
if (world.rank() == 0) { | ||
input_matrix.resize(rows_count * columns_count); | ||
input_vector.resize(rows_count); | ||
output_vector.resize(columns_count, 0); | ||
|
||
for (int i = 0; i < rows_count * columns_count; ++i) { | ||
input_matrix[i] = (rand() % 1000) - 500; | ||
} | ||
|
||
for (int i = 0; i < rows_count; ++i) { | ||
input_vector[i] = (rand() % 1000) - 500; | ||
} | ||
|
||
taskDataPar->inputs.emplace_back(reinterpret_cast<uint8_t*>(input_matrix.data())); | ||
taskDataPar->inputs_count.emplace_back(input_matrix.size()); | ||
taskDataPar->inputs.emplace_back(reinterpret_cast<uint8_t*>(input_vector.data())); | ||
taskDataPar->inputs_count.emplace_back(input_vector.size()); | ||
taskDataPar->outputs.emplace_back(reinterpret_cast<uint8_t*>(output_vector.data())); | ||
taskDataPar->outputs_count.emplace_back(output_vector.size()); | ||
} | ||
|
||
auto taskParallel = std::make_shared<khovansky_d_ribbon_vertical_scheme_mpi::RibbonVerticalSchemeMPI>(taskDataPar); | ||
|
||
ASSERT_TRUE(taskParallel->validation()); | ||
ASSERT_TRUE(taskParallel->pre_processing()); | ||
ASSERT_TRUE(taskParallel->run()); | ||
ASSERT_TRUE(taskParallel->post_processing()); | ||
} |
53 changes: 53 additions & 0 deletions
53
tasks/mpi/khovansky_d_ribbon_vertical_scheme/include/ops_mpi.hpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
// Copyright 2024 Khovansky Dmitry | ||
#pragma once | ||
|
||
#include <gtest/gtest.h> | ||
|
||
#include <boost/mpi/collectives.hpp> | ||
#include <boost/mpi/communicator.hpp> | ||
#include <memory> | ||
#include <numeric> | ||
#include <string> | ||
#include <utility> | ||
#include <vector> | ||
|
||
#include "core/task/include/task.hpp" | ||
|
||
namespace khovansky_d_ribbon_vertical_scheme_mpi { | ||
|
||
class RibbonVerticalSchemeSeq : public ppc::core::Task { | ||
public: | ||
explicit RibbonVerticalSchemeSeq(std::shared_ptr<ppc::core::TaskData> taskData_) : Task(std::move(taskData_)) {} | ||
bool pre_processing() override; | ||
bool validation() override; | ||
bool run() override; | ||
bool post_processing() override; | ||
|
||
private: | ||
int* hello_matrix; | ||
int* hello_vector; | ||
int rows_count{}; | ||
int columns_count{}; | ||
std::vector<int> goodbye_vector; | ||
}; | ||
|
||
class RibbonVerticalSchemeMPI : public ppc::core::Task { | ||
public: | ||
explicit RibbonVerticalSchemeMPI(std::shared_ptr<ppc::core::TaskData> taskData_) : Task(std::move(taskData_)) {} | ||
bool pre_processing() override; | ||
bool validation() override; | ||
bool run() override; | ||
bool post_processing() override; | ||
|
||
private: | ||
std::vector<int> hello_matrix; | ||
std::vector<int> hello_vector; | ||
int rows_count{}; | ||
int columns_count{}; | ||
std::vector<int> rows_per_process; | ||
std::vector<int> rows_offsets; | ||
std::vector<int> goodbye_vector; | ||
boost::mpi::communicator world; | ||
}; | ||
|
||
} // namespace khovansky_d_ribbon_vertical_scheme_mpi |
179 changes: 179 additions & 0 deletions
179
tasks/mpi/khovansky_d_ribbon_vertical_scheme/perf_tests/main.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
// Copyright 2024 Khovansky Dmitry | ||
#include <gtest/gtest.h> | ||
|
||
#include <boost/mpi.hpp> | ||
#include <boost/mpi/environment.hpp> | ||
#include <boost/mpi/timer.hpp> | ||
#include <memory> | ||
#include <random> | ||
#include <vector> | ||
|
||
#include "core/perf/include/perf.hpp" | ||
#include "mpi/khovansky_d_ribbon_vertical_scheme/include/ops_mpi.hpp" | ||
|
||
TEST(khovansky_d_ribbon_vertical_scheme_mpi, Performance_Pipeline_Run) { | ||
boost::mpi::environment env; | ||
boost::mpi::communicator world; | ||
|
||
std::vector<int> input_matrix; | ||
std::vector<int> input_vector; | ||
std::vector<int> output_vector; | ||
|
||
std::shared_ptr<ppc::core::TaskData> taskDataPar = std::make_shared<ppc::core::TaskData>(); | ||
int rows_count; | ||
int columns_count; | ||
|
||
if (world.rank() == 0) { | ||
rows_count = 8192; | ||
columns_count = 8192; | ||
|
||
input_vector.resize(columns_count); | ||
input_matrix.resize(rows_count * columns_count); | ||
|
||
for (int j = 0; j < rows_count; ++j) { | ||
for (int i = 0; i < columns_count; ++i) { | ||
input_matrix[j * columns_count + i] = (rand() % 1001) - 500; | ||
} | ||
} | ||
|
||
for (int i = 0; i < rows_count; ++i) { | ||
input_vector[i] = (rand() % 1000) - 500; | ||
} | ||
|
||
output_vector.resize(columns_count, 0); | ||
|
||
taskDataPar->inputs.emplace_back(reinterpret_cast<uint8_t*>(input_matrix.data())); | ||
taskDataPar->inputs_count.emplace_back(input_matrix.size()); | ||
|
||
taskDataPar->inputs.emplace_back(reinterpret_cast<uint8_t*>(input_vector.data())); | ||
taskDataPar->inputs_count.emplace_back(input_vector.size()); | ||
|
||
taskDataPar->outputs.emplace_back(reinterpret_cast<uint8_t*>(output_vector.data())); | ||
taskDataPar->outputs_count.emplace_back(output_vector.size()); | ||
} | ||
|
||
auto taskParallel = std::make_shared<khovansky_d_ribbon_vertical_scheme_mpi::RibbonVerticalSchemeMPI>(taskDataPar); | ||
ASSERT_TRUE(taskParallel->validation()); | ||
taskParallel->pre_processing(); | ||
taskParallel->run(); | ||
taskParallel->post_processing(); | ||
|
||
auto perfAttr = std::make_shared<ppc::core::PerfAttr>(); | ||
perfAttr->num_running = 10; | ||
const boost::mpi::timer current_timer; | ||
perfAttr->current_timer = [&] { return current_timer.elapsed(); }; | ||
|
||
auto perfResults = std::make_shared<ppc::core::PerfResults>(); | ||
|
||
auto perfAnalyzer = std::make_shared<ppc::core::Perf>(taskParallel); | ||
perfAnalyzer->pipeline_run(perfAttr, perfResults); | ||
|
||
if (world.rank() == 0) { | ||
ppc::core::Perf::print_perf_statistic(perfResults); | ||
|
||
std::vector<int> seq_result(output_vector.size(), 0); | ||
|
||
auto taskDataSeq = std::make_shared<ppc::core::TaskData>(); | ||
|
||
taskDataSeq->inputs.emplace_back(reinterpret_cast<uint8_t*>(input_matrix.data())); | ||
taskDataSeq->inputs_count.emplace_back(input_matrix.size()); | ||
taskDataSeq->inputs.emplace_back(reinterpret_cast<uint8_t*>(input_vector.data())); | ||
taskDataSeq->inputs_count.emplace_back(input_vector.size()); | ||
taskDataSeq->outputs.emplace_back(reinterpret_cast<uint8_t*>(seq_result.data())); | ||
taskDataSeq->outputs_count.emplace_back(seq_result.size()); | ||
|
||
auto taskSequential = | ||
std::make_shared<khovansky_d_ribbon_vertical_scheme_mpi::RibbonVerticalSchemeSeq>(taskDataSeq); | ||
ASSERT_TRUE(taskSequential->validation()); | ||
taskSequential->pre_processing(); | ||
taskSequential->run(); | ||
taskSequential->post_processing(); | ||
|
||
ASSERT_EQ(output_vector.size(), seq_result.size()); | ||
for (size_t i = 0; i < output_vector.size(); ++i) { | ||
ASSERT_EQ(output_vector[i], seq_result[i]); | ||
} | ||
} | ||
} | ||
|
||
TEST(khovansky_d_ribbon_vertical_scheme_mpi, Performance_Task_Run) { | ||
boost::mpi::environment env; | ||
boost::mpi::communicator world; | ||
|
||
std::vector<int> input_matrix; | ||
std::vector<int> input_vector; | ||
std::vector<int> output_vector; | ||
|
||
std::shared_ptr<ppc::core::TaskData> taskDataPar = std::make_shared<ppc::core::TaskData>(); | ||
int rows_count; | ||
int columns_count; | ||
|
||
if (world.rank() == 0) { | ||
rows_count = 8000; | ||
columns_count = 8000; | ||
|
||
input_matrix.resize(rows_count * columns_count); | ||
input_vector.resize(columns_count); | ||
|
||
for (int j = 0; j < rows_count; ++j) { | ||
for (int i = 0; i < columns_count; ++i) { | ||
input_matrix[j * columns_count + i] = (rand() % 1001) - 500; | ||
} | ||
} | ||
|
||
for (int i = 0; i < rows_count; ++i) { | ||
input_vector[i] = (rand() % 1000) - 500; | ||
} | ||
|
||
output_vector.resize(columns_count, 0); | ||
|
||
taskDataPar->inputs.emplace_back(reinterpret_cast<uint8_t*>(input_matrix.data())); | ||
taskDataPar->inputs_count.emplace_back(input_matrix.size()); | ||
taskDataPar->inputs.emplace_back(reinterpret_cast<uint8_t*>(input_vector.data())); | ||
taskDataPar->inputs_count.emplace_back(input_vector.size()); | ||
taskDataPar->outputs.emplace_back(reinterpret_cast<uint8_t*>(output_vector.data())); | ||
taskDataPar->outputs_count.emplace_back(output_vector.size()); | ||
} | ||
|
||
auto taskParallel = std::make_shared<khovansky_d_ribbon_vertical_scheme_mpi::RibbonVerticalSchemeMPI>(taskDataPar); | ||
ASSERT_TRUE(taskParallel->validation()); | ||
taskParallel->pre_processing(); | ||
taskParallel->run(); | ||
taskParallel->post_processing(); | ||
|
||
auto perfAttr = std::make_shared<ppc::core::PerfAttr>(); | ||
perfAttr->num_running = 10; | ||
const boost::mpi::timer current_timer; | ||
perfAttr->current_timer = [&] { return current_timer.elapsed(); }; | ||
|
||
auto perfResults = std::make_shared<ppc::core::PerfResults>(); | ||
|
||
auto perfAnalyzer = std::make_shared<ppc::core::Perf>(taskParallel); | ||
perfAnalyzer->task_run(perfAttr, perfResults); | ||
|
||
if (world.rank() == 0) { | ||
ppc::core::Perf::print_perf_statistic(perfResults); | ||
|
||
std::vector<int> seq_result(output_vector.size(), 0); | ||
|
||
auto taskDataSeq = std::make_shared<ppc::core::TaskData>(); | ||
taskDataSeq->inputs.emplace_back(reinterpret_cast<uint8_t*>(input_matrix.data())); | ||
taskDataSeq->inputs_count.emplace_back(input_matrix.size()); | ||
taskDataSeq->inputs.emplace_back(reinterpret_cast<uint8_t*>(input_vector.data())); | ||
taskDataSeq->inputs_count.emplace_back(input_vector.size()); | ||
taskDataSeq->outputs.emplace_back(reinterpret_cast<uint8_t*>(seq_result.data())); | ||
taskDataSeq->outputs_count.emplace_back(seq_result.size()); | ||
|
||
auto taskSequential = | ||
std::make_shared<khovansky_d_ribbon_vertical_scheme_mpi::RibbonVerticalSchemeSeq>(taskDataSeq); | ||
ASSERT_TRUE(taskSequential->validation()); | ||
taskSequential->pre_processing(); | ||
taskSequential->run(); | ||
taskSequential->post_processing(); | ||
|
||
ASSERT_EQ(output_vector.size(), seq_result.size()); | ||
for (size_t i = 0; i < output_vector.size(); ++i) { | ||
ASSERT_EQ(output_vector[i], seq_result[i]); | ||
} | ||
} | ||
} |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
please check case when matrix and vector sizes are different (e.g. 10, 11, 12)