Yet another Python binding for fastText.
The binding supports Python 2.6, 2.7 and Python 3. It requires Cython.
Numpy and cysignals are also dependencies, but are optional.
pyfasttext
has been tested successfully on Linux and Mac OS X.
Warning: if you want to compile pyfasttext
on Windows, do not compile with the cysignals
module because it does not support this platform.
- pyfasttext
- Table of Contents
To compile pyfasttext
, make sure you have the following compiler:
- GCC (
g++
) with C++11 support. - LLVM (
clang++
) with (at least) partial C++17 support.
Just type these lines:
pip install cython
pip install pyfasttext
If you have a compilation error, you can try to install cysignals
manually:
pip install cysignals
Then, retry to install pyfasttext
with the already mentioned pip
command.
pyfasttext
uses git submodules.
So, you need to add the --recursive
option when you clone the repository.
git clone --recursive https://github.com/vrasneur/pyfasttext.git
cd pyfasttext
Python 2.7 support relies on the future module: pyfasttext
needs bytes
objects, which are not available natively in Python2.
You can install the future
module with pip
.
pip install future
First, install all the requirements:
pip install -r requirements.txt
Then, build and install with setup.py
:
python setup.py install
pyfasttext
can export word vectors as numpy
ndarray
s, however this feature can be disabled at compile time.
To compile without numpy
, pyfasttext has a USE_NUMPY
environment variable. Set this variable to 0 (or empty), like this:
USE_NUMPY=0 python setup.py install
If you want to compile without cysignals
, likewise, you can set the USE_CYSIGNALS
environment variable to 0 (or empty).
>>> from pyfasttext import FastText
>>> model = FastText('/path/to/model.bin')
or
>>> model = FastText()
>>> model.load_model('/path/to/model.bin')
You can use all the options provided by the fastText
binary (input
, output
, epoch
, lr
, ...).
Just use keyword arguments in the training methods of the FastText
object.
>>> model = FastText()
>>> model.skipgram(input='data.txt', output='model', epoch=100, lr=0.7)
>>> model = FastText()
>>> model.cbow(input='data.txt', output='model', epoch=100, lr=0.7)
By default, a single word vector is returned as a regular Python array of floats.
>>> model['dog']
array('f', [-1.308749794960022, -1.8326224088668823, ...])
The model.get_numpy_vector(word)
method returns the word vector as a numpy
ndarray
.
>>> model.get_numpy_vector('dog')
array([-1.30874979, -1.83262241, ...], dtype=float32)
If you want a normalized vector (i.e. the vector divided by its norm), there is an optional boolean parameter named normalized
.
>>> model.get_numpy_vector('dog', normalized=True)
array([-0.07084749, -0.09920666, ...], dtype=float32)
The inverse operation of model[word]
or model.get_numpy_vector(word)
is model.words_for_vector(vector, k)
.
It returns a list of the k
words closest to the provided vector. The default value for k
is 1.
>>> king = model.get_numpy_vector('king')
>>> man = model.get_numpy_vector('man')
>>> woman = model.get_numpy_vector('woman')
>>> model.words_for_vector(king + woman - man, k=1)
[('queen', 0.77121970653533936)]
>>> model.nwords
500000
>>> for word in model.words:
... print(word, model[word])
If you want all the word vectors as a big numpy
ndarray
, you can use the numpy_normalized_vectors
member. Note that all these vectors are normalized.
>>> model.nwords
500000
>>> model.numpy_normalized_vectors
array([[-0.07549749, -0.09407753, ...],
[ 0.00635979, -0.17272158, ...],
...,
[-0.01009259, 0.14604086, ...],
[ 0.12467574, -0.0609326 , ...]], dtype=float32)
>>> model.numpy_normalized_vectors.shape
(500000, 100) # (number of words, dimension)
>>> model.similarity('dog', 'cat')
0.75596606254577637
>>> model.nearest_neighbors('dog', k=2)
[('dogs', 0.7843924736976624), ('cat', 75596606254577637)]
The model.most_similar()
method works similarly as the one in gensim.
>>> model.most_similar(positive=['woman', 'king'], negative=['man'], k=1)
[('queen', 0.77121970653533936)]
>>> model = FastText()
>>> model.supervised(input='/path/to/input.txt', output='/path/to/model', epoch=100, lr=0.7)
>>> model.labels
['LABEL1', 'LABEL2', ...]
>>> model.nlabels
100
To obtain the k
most likely labels from test sentences, there are multiple model.predict_*()
methods.
The default value for k
is 1. If you want to obtain all the possible labels, use None
for k
.
If you have a list of strings (or an iterable object), use this:
>>> model.predict_proba(['first sentence\n', 'second sentence\n'], k=2)
[[('LABEL1', 0.99609375), ('LABEL3', 1.953126549381068e-08)], [('LABEL2', 1.0), ('LABEL3', 1.953126549381068e-08)]]
If you want to test a single string, use this:
>>> model.predict_proba_single('first sentence\n', k=2)
[('LABEL1', 0.99609375), ('LABEL3', 1.953126549381068e-08)]
WARNING: In order to get the same probabilities as the fastText
binary, you have to add a newline (\n
) at the end of each string.
If your test data is stored inside a file, use this:
>>> model.predict_proba_file('/path/to/test.txt', k=2)
[[('LABEL1', 0.99609375), ('LABEL3', 1.953126549381068e-08)], [('LABEL2', 1.0), ('LABEL3', 1.953126549381068e-08)]]
For performance reasons, fastText probabilities often do not sum up to 1.0.
If you want normalized probabilities (where the sum is closer to 1.0 than the original probabilities), you can use the normalized=True
parameter in all the methods that output probabilities (model.predict_proba()
, model.predict_proba_file()
and model.predict_proba_single()
).
>>> sum(proba for label, proba in model.predict_proba_single('this is a sentence that needs to be classified\n', k=None))
0.9785203068801335
>>> sum(proba for label, proba in model.predict_proba_single('this is a sentence that needs to be classified\n', k=None, normalized=True))
0.9999999999999898
If you have a list of strings (or an iterable object), use this:
>>> model.predict(['first sentence\n', 'second sentence\n'], k=2)
[['LABEL1', 'LABEL3'], ['LABEL2', 'LABEL3']]
If you want to test a single string, use this:
>>> model.predict_single('first sentence\n', k=2)
['LABEL1', 'LABEL3']
WARNING: In order to get the same probabilities as the fastText
binary, you have to add a newline (\n
) at the end of each string.
If your test data is stored inside a file, use this:
>>> model.predict_file('/path/to/test.txt', k=2)
[['LABEL1', 'LABEL3'], ['LABEL2', 'LABEL3']]
Use keyword arguments in the model.quantize()
method.
>>> model.quantize(input='/path/to/input.txt', output='/path/to/model')
You can load quantized models using the FastText
constructor or the model.load_model()
method.
If you want to know if a model has been quantized before, use the model.quantized
attribute.
>>> model = FastText('/path/to/model.bin')
>>> model.quantized
False
>>> model = FastText('/path/to/model.ftz')
>>> model.quantized
True
fastText can use subwords (i.e. character ngrams) when doing unsupervised or supervised learning.
You can access the subwords, and their associated vectors, using pyfasttext
.
fastText's word embeddings can be augmented with subword-level information. It is possible to retrieve the subwords and their associated vectors from a model using pyfasttext
.
To retrieve all the subwords for a given word, use the model.get_all_subwords(word)
method.
>>> model.args.get('minn'), model.args.get('maxn')
(2, 4)
>>> model.get_all_subwords('hello') # word + subwords from 2 to 4 characters
['hello', '<h', '<he', '<hel', 'he', 'hel', 'hell', 'el', 'ell', 'ello', 'll', 'llo', 'llo>', 'lo', 'lo>', 'o>']
For fastText, <
means "beginning of a word" and >
means "end of a word".
As you can see, fastText includes the full word. You can omit it using the omit_word=True
keyword argument.
>>> model.get_all_subwords('hello', omit_word=True)
['<h', '<he', '<hel', 'he', 'hel', 'hell', 'el', 'ell', 'ello', 'll', 'llo', 'llo>', 'lo', 'lo>', 'o>']
When a model is quantized, fastText may prune some subwords.
If you want to see only the subwords that are really used when computing a word vector, you should use the model.get_subwords(word)
method.
>>> model.quantized
True
>>> model.get_subwords('beautiful')
['eau', 'aut', 'ful', 'ul']
>>> model.get_subwords('hello')
['hello'] # fastText will not use any subwords when computing the word vector, only the full word
To get the individual vectors given the subwords, use the model.get_numpy_subword_vectors(word)
method.
>>> model.get_numpy_subword_vectors('beautiful') # 4 vectors, so 4 rows
array([[ 0.49022141, 0.13586822, ..., -0.14065443, 0.89617103], # subword "eau"
[-0.42594951, 0.06260503, ..., -0.18182631, 0.34219387], # subword "aut"
[ 0.49958718, 2.93831301, ..., -1.97498322, -1.16815805], # subword "ful"
[-0.4368791 , -1.92924356, ..., 1.62921488, 1.90240896]], dtype=float32) # subword "ul"
In fastText, the final word vector is the average of these individual vectors.
>>> import numpy as np
>>> vec1 = model.get_numpy_vector('beautiful')
>>> vecs2 = model.get_numpy_subword_vectors('beautiful')
>>> np.allclose(vec1, np.average(vecs2, axis=0))
True
To compute the vector of a sequence of words (i.e. a sentence), fastText uses two different methods:
- one for unsupervised models
- another one for supervised models
When fastText computes a word vector, recall that it uses the average of the following vectors: the word itself and its subwords.
For unsupervised models, the representation of a sentence for fastText is the average of the normalized word vectors.
To get the resulting vector as a regular Python array, use the model.get_sentence_vector(line)
method.
To get the resulting vector as a numpy
ndarray
, use the model.get_numpy_sentence_vector(line)
method.
>>> vec = model.get_numpy_sentence_vector('beautiful cats')
>>> vec1 = model.get_numpy_vector('beautiful', normalized=True)
>>> vec2 = model.get_numpy_vector('cats', normalized=True)
>>> np.allclose(vec, np.average([vec1, vec2], axis=0)
True
For supervised models, fastText uses the regular word vectors, as well as vectors computed using word ngrams (i.e. shorter sequences of words from the sentence). When computing the average, these vectors are not normalized.
To get the resulting vector as a regular Python array, use the model.get_text_vector(line)
method.
To get the resulting vector as a numpy
ndarray
, use the model.get_numpy_text_vector(line)
method.
>>> model.get_numpy_sentence_vector('beautiful cats') # for an unsupervised model
array([-0.20266785, 0.3407566 , ..., 0.03044436, 0.39055538], dtype=float32)
>>> model.get_numpy_text_vector('beautiful cats') # for a supervised model
array([-0.20840774, 0.4289546 , ..., -0.00457615, 0.52417743], dtype=float32)
>>> import pyfasttext
>>> pyfasttext.__version__
'0.4.3'
As there is no version number in fastText, we use the latest fastText commit hash (from HEAD
) as a substitute.
>>> import pyfasttext
>>> pyfasttext.__fasttext_version__
'431c9e2a9b5149369cc60fb9f5beba58dcf8ca17'
>>> model.args
{'bucket': 11000000,
'cutoff': 0,
'dim': 100,
'dsub': 2,
'epoch': 100,
...
}
fastText uses a versioning scheme for its generated models. You can retrieve the model version number using the model.version
attribute.
version number | description |
---|---|
-1 | for really old models with no version number |
11 | first version number added by fastText |
12 | for models generated after fastText added support for subwords in supervised learning |
>>> model.version
12
You can use the FastText
object to extract labels or classes from a dataset.
The label prefix (which is __label__
by default) is set using the label
parameter in the constructor.
If you load an existing model, the label prefix will be the one defined in the model.
>>> model = FastText(label='__my_prefix__')
There can be multiple labels per line.
>>> model.extract_labels('/path/to/dataset1.txt')
[['LABEL2', 'LABEL5'], ['LABEL1'], ...]
There can be only one class per line.
>>> model.extract_classes('/path/to/dataset2.txt')
['LABEL3', 'LABEL1', 'LABEL2', ...]
The fastText
source code directly calls exit() when something wrong happens (e.g. a model file does not exist, ...).
Instead of exiting, pyfasttext
raises a Python exception (RuntimeError
).
>>> import pyfasttext
>>> model = pyfasttext.FastText('/path/to/non-existing_model.bin')
Model file cannot be opened for loading!
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "src/pyfasttext.pyx", line 124, in pyfasttext.FastText.__cinit__ (src/pyfasttext.cpp:1800)
File "src/pyfasttext.pyx", line 348, in pyfasttext.FastText.load_model (src/pyfasttext.cpp:5947)
RuntimeError: fastext tried to exit: 1
pyfasttext
uses cysignals
to make all the computationally intensive operations (e.g. training) interruptible.
To easily interrupt such an operation, just type Ctrl-C
in your Python shell.
>>> model.skipgram(input='/path/to/input.txt', output='/path/to/mymodel')
Read 12M words
Number of words: 60237
Number of labels: 0
... # type Ctrl-C during training
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "src/pyfasttext.pyx", line 680, in pyfasttext.FastText.skipgram (src/pyfasttext.cpp:11125)
File "src/pyfasttext.pyx", line 674, in pyfasttext.FastText.train (src/pyfasttext.cpp:11009)
File "src/pyfasttext.pyx", line 668, in pyfasttext.FastText.train (src/pyfasttext.cpp:10926)
File "src/cysignals/signals.pyx", line 94, in cysignals.signals.sig_raise_exception (build/src/cysignals/signals.c:1328)
KeyboardInterrupt
>>> # you can have your shell back!