Skip to content

mateusxap/Keras-Tensorflow

Repository files navigation

Deep Learning Experiments with Keras & TensorFlow

This repository contains a collection of my experiments with deep learning using Keras and TensorFlow. The focus is on exploring various neural network architectures and techniques for tasks like:

  • Recurrent Neural Networks (RNNs):
    • rnn directory: Different RNN architectures (LSTM, GRU) for tasks like text generation and mood classification. This directory also includes experiments with word embedding techniques to represent text data as dense vectors
    • Datasets:
      • train_data.txt: Contains a collection of positive sentences.
      • train_data_bad.txt: Contains a collection of negative sentences.
  • Image Colorization:
    • colorization.py: Experimenting with convolutional neural networks to colorize grayscale images.
  • Style Transfer:
    • styletransfer.py: Implementing neural style transfer to apply the artistic style of one image to another.
  • Generative Adversarial Networks (GANs):
    • gan_with_vae.py: Implementing a GAN with Variational Autoencoder (VAE).
  • Dropout and Batch Normalization:
    • This repository also includes experiments exploring the effects of dropout and batch normalization techniques on model performance.

Getting Started:

  1. Clone this repository:
git clone https://github.com/mateusxap/Keras-Tensorflow.git
  1. Install the necessary libraries:
pip install tensorflow keras
  1. Explore the different scripts and run the experiments.

Disclaimer:

This repository is meant for personal exploration and learning. The code is provided as-is, and some experiments might be in early stages of development.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages