Skip to content

Commit

Permalink
lemmas about Lebesgue's outer measure
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Aug 13, 2024
1 parent 99c3a83 commit 0fffc6b
Show file tree
Hide file tree
Showing 3 changed files with 150 additions and 2 deletions.
10 changes: 8 additions & 2 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,13 +4,19 @@

### Added

- in `sequences.v`:
+ lemma `cvg_geometric_eseries_half`

- in `lebesgue_measure.v`:
+ definitions `is_open_itv`, `open_itv_cover`
+ lemmas `outer_measure_open_itv_cover`, `outer_measure_open`, `outer_measure_Gdelta`,
`negligible_outer_measure`

### Changed

### Renamed

### Generalized
- in `reals.v`:
+ lemma `rat_in_itvoo`

### Deprecated

Expand Down
132 changes: 132 additions & 0 deletions theories/lebesgue_measure.v
Original file line number Diff line number Diff line change
Expand Up @@ -2041,6 +2041,138 @@ Notation emeasurable_fun_funeneg := measurable_funeneg (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed `measurable_fun_limn_esup`")]
Notation measurable_fun_lim_esup := measurable_fun_limn_esup (only parsing).

Section negligible_outer_measure.
Context {R : realType}.
Implicit Types (A : set R).
Local Open Scope ereal_scope.

Definition is_open_itv A := exists ab, A = `]ab.1, ab.2[%classic.

Definition open_itv_cover A := [set F : (set R)^nat |
(forall i, is_open_itv (F i)) /\ A `<=` \bigcup_k (F k)].

Let l := (@wlength R idfun).

Lemma outer_measure_open_itv_cover A : (l^*)%mu A =
ereal_inf [set \sum_(k <oo) l (F k) | F in open_itv_cover A].
Proof.
apply/eqP; rewrite eq_le; apply/andP; split.
- apply: le_ereal_inf => _ /= [F [Fitv AF <-]].
exists (fun i => `](sval (cid (Fitv i))).1, (sval (cid (Fitv i))).2]%classic).
+ split=> [i|].
* have [?|?] := ltP (sval (cid (Fitv i))).1 (sval (cid (Fitv i))).2.
- by apply/ocitvP; right; exists (sval (cid (Fitv i))).
- by apply/ocitvP; left; rewrite set_itv_ge// -leNgt.
* apply: (subset_trans AF) => r /= [n _ Fnr]; exists n => //=.
have := Fitv n; move: Fnr; case: cid => -[x y]/= ->/= + _.
exact: subset_itv_oo_oc.
+ apply: eq_eseriesr => k _; rewrite /l wlength_itv/=.
case: (Fitv k) => /= -[a b]/= Fkab.
by case: cid => /= -[x1 x2] ->; rewrite wlength_itv.
- have [/lb_ereal_inf_adherent lA|] :=
boolP ((l^* A)%mu \is a fin_num); last first.
rewrite ge0_fin_numE ?outer_measure_ge0// -leNgt leye_eq => /eqP ->.
exact: leey.
apply/lee_addgt0Pr => /= e e0.
have : (0 < e / 2)%R by rewrite divr_gt0.
move=> /lA[_ [/= F [mF AF]] <-]; rewrite -/((l^* A)%mu) => lFe.
have Fcover n : exists2 B, F n `<=` B &
is_open_itv B /\ l B <= l (F n) + (e / 2 ^+ n.+2)%:E.
have [[a b] _ /= abFn] := mF n.
exists `]a, b + e / 2^+n.+2[%classic.
rewrite -abFn => x/= /[!in_itv] /andP[->/=] /le_lt_trans; apply.
by rewrite ltrDl divr_gt0.
split; first by exists (a, b + e / 2^+n.+2).
have [ab|ba] := ltP a b.
rewrite /l -abFn !wlength_itv//= !lte_fin ifT.
by rewrite ab -!EFinD lee_fin addrAC.
by rewrite ltr_wpDr// divr_ge0// ltW.
rewrite -abFn [in leRHS]set_itv_ge ?bnd_simp -?leNgt// /l wlength0 add0r.
rewrite wlength_itv//=; case: ifPn => [abe|_]; last first.
by rewrite lee_fin divr_ge0// ltW.
by rewrite -EFinD addrAC lee_fin -[leRHS]add0r lerD2r subr_le0.
pose G := fun n => sval (cid2 (Fcover n)).
have FG n : F n `<=` G n by rewrite /G; case: cid2.
have Gitv n : is_open_itv (G n) by rewrite /G; case: cid2 => ? ? [].
have lGFe n : l (G n) <= l (F n) + (e / 2 ^+ n.+2)%:E.
by rewrite /G; case: cid2 => ? ? [].
have AG : A `<=` \bigcup_k G k.
by apply: (subset_trans AF) => [/= r [n _ /FG Gnr]]; exists n.
apply: (@le_trans _ _ (\sum_(0 <= k <oo) (l (F k) + (e / 2 ^+ k.+2)%:E))).
apply: (@le_trans _ _ (\sum_(0 <= k <oo) l (G k))).
by apply: ereal_inf_lbound => /=; exists G.
exact: lee_nneseries.
rewrite nneseriesD//; last first.
by move=> i _; rewrite lee_fin// divr_ge0// ltW.
rewrite [in leRHS](splitr e) EFinD addeA leeD//; first exact/ltW.
have := @cvg_geometric_eseries_half R e 1; rewrite expr1.
rewrite [X in eseries X](_ : _ = (fun k => (e / (2 ^+ (k.+2))%:R)%:E)); last first.
by apply/funext => n; rewrite addn2 natrX.
move/cvg_lim => <-//; apply: lee_nneseries => //.
- by move=> n _; rewrite lee_fin divr_ge0// ltW.
- by move=> n _; rewrite lee_fin -natrX.
Qed.

Definition mu := (@lebesgue_measure R).

Lemma outer_measure_open A : (l^* A)%mu < +oo ->
forall e, (0 < e)%R -> exists U, [/\ open U,
A `<=` U & mu U <= (l^* A)%mu + e%:E].
Proof.
move=> Aoo/= e e0.
have [F AF Fe] : exists2 I_, open_itv_cover A I_ &
\sum_(0 <= k <oo) l (I_ k) <= (l^* A)%mu + e%:E.
have : (l^* A)%mu\is a fin_num by rewrite ge0_fin_numE// outer_measure_ge0.
rewrite outer_measure_open_itv_cover.
move=> /lb_ereal_inf_adherent-/(_ _ e0)[_/= [F]] AF <- Fe.
by exists F => //; exact/ltW.
exists (\bigcup_i F i); split.
- apply: bigcup_open => // i _.
by case: AF => /(_ i)[ab -> _]; exact: interval_open.
- by case: AF.
- rewrite (le_trans _ Fe)//.
apply: (le_trans (outer_measure_sigma_subadditive mu F)).
apply: lee_nneseries => // i _.
case: AF => /(_ i)[[a b] -> _]/=.
by rewrite /l wlength_itv/= -(@lebesgue_measure_itv R `]a, b[).
Qed.

Lemma outer_measure_Gdelta A : (l^* A)%mu < +oo ->
exists G : (set R)^nat, [/\ (forall i, open (G i)),
A `<=` \bigcap_i G i &
mu (\bigcap_i G i) = (l^* A)%mu].
Proof.
move=> Xoo.
have inv0 k : (0 < k.+1%:R^-1 :> R)%R by rewrite invr_gt0.
pose F k := projT1 (cid (outer_measure_open Xoo (inv0 k))).
have oF k : open (F k) by rewrite /F; case: cid => x /= [].
have AF k : A `<=` F k by rewrite /F; case: cid => x /= [].
have mF k : mu (F k) <= (l^* A)%mu + k.+1%:R^-1%:E.
by rewrite /F; case: cid => x /= [].
pose G := \bigcap_k (F k).
exists F; split => //; first exact: sub_bigcap.
apply/eqP; rewrite eq_le; apply/andP; split.
apply/lee_addgt0Pr => /= _/posnumP[e].
near \oo => k.
apply: (@le_trans _ _ ((l^* A)%mu + k.+1%:R^-1%:E)).
by rewrite (le_trans _ (mF k))// le_outer_measure//; exact: bigcap_inf.
rewrite leeD2l// lee_fin; apply: ltW.
by near: k; exact: near_infty_natSinv_lt.
rewrite [leRHS](_ : _ = l^* (\bigcap_i F i))%mu// le_outer_measure//.
exact: sub_bigcap.
Unshelve. all: by end_near. Qed.

Lemma negligible_outer_measure (N : set R) : mu.-negligible N <-> (l^*)%mu N = 0.
Proof.
split=> [[/= A [mA mA0 NA]]|N0].
- by apply/eqP; rewrite eq_le outer_measure_ge0 andbT -mA0 le_outer_measure.
- have := @outer_measure_Gdelta N; rewrite N0 ltry => /(_ isT)[F [oF NF mF0]].
exists (\bigcap_i F i); split => //=.
by apply: bigcapT_measurable => i; exact: open_measurable.
Qed.

End negligible_outer_measure.

Section lebesgue_regularity.
Context {R : realType}.
Let mu := [the measure _ _ of @lebesgue_measure R].
Expand Down
10 changes: 10 additions & 0 deletions theories/sequences.v
Original file line number Diff line number Diff line change
Expand Up @@ -1446,6 +1446,16 @@ Arguments eseries {R} u_ n : simpl never.
Arguments etelescope {R} u_ n : simpl never.
Notation "[ 'series' E ]_ n" := (eseries [sequence E%E]_n) : ereal_scope.

Lemma cvg_geometric_eseries_half {R : archiFieldType} (r : R) (n : nat) :
eseries (fun k => (r / (2 ^ (k + n.+1))%:R)%:E) @ \oo --> (r / 2 ^+ n)%:E.
Proof.
apply: cvg_EFin => //.
by apply: nearW => //= x; rewrite /eseries/= sumEFin.
rewrite [X in X @ _ --> _](_ : _ = series (fun k => r / (2 ^ (k + n.+1))%:R)); last first.
by apply/funext => x; rewrite /= /eseries/= sumEFin.
exact: cvg_geometric_series_half.
Qed.

Section eseries_ops.
Variable (R : numDomainType).
Local Open Scope ereal_scope.
Expand Down

0 comments on commit 0fffc6b

Please sign in to comment.