Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
pi8027 authored and affeldt-aist committed Dec 7, 2023
1 parent 9350a49 commit 16e49c0
Showing 1 changed file with 5 additions and 7 deletions.
12 changes: 5 additions & 7 deletions theories/kernel.v
Original file line number Diff line number Diff line change
Expand Up @@ -849,16 +849,14 @@ Context d1 d2 d3 (X : measurableType d1) (Y : measurableType d2)
Variable l : R.-ker X ~> Y.
Variable k : R.-ker [the measurableType _ of X * Y] ~> Z.

Local Notation "l \; k" := (kcomp l k).

Let kcomp0 x : (l \; k) x set0 = 0.
Let kcomp0 x : kcomp l k x set0 = 0.
Proof.
by rewrite /kcomp (eq_integral (cst 0)) ?integral0// => y _; rewrite measure0.
Qed.

Let kcomp_ge0 x U : 0 <= (l \; k) x U. Proof. exact: integral_ge0. Qed.
Let kcomp_ge0 x U : 0 <= kcomp l k x U. Proof. exact: integral_ge0. Qed.

Let kcomp_sigma_additive x : semi_sigma_additive ((l \; k) x).
Let kcomp_sigma_additive x : semi_sigma_additive (kcomp l k x).
Proof.
move=> U mU tU mUU; rewrite [X in _ --> X](_ : _ =
\int[l x]_y (\sum_(n <oo) k (x, y) (U n))); last first.
Expand All @@ -871,10 +869,10 @@ exact: measurableT_comp (measurable_kernel k _ (mU n)) _.
Qed.

HB.instance Definition _ x := isMeasure.Build _ _ R
((l \; k) x) (kcomp0 x) (kcomp_ge0 x) (@kcomp_sigma_additive x).
(kcomp l k x) (kcomp0 x) (kcomp_ge0 x) (@kcomp_sigma_additive x).

Definition mkcomp : X -> {measure set Z -> \bar R} := fun x =>
[the measure _ _ of (l \; k) x].
[the measure _ _ of kcomp l k x].

End kcomp_is_measure.

Expand Down

0 comments on commit 16e49c0

Please sign in to comment.