Skip to content

Commit

Permalink
rm caddE cscaleE
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Dec 27, 2023
1 parent 314ec4f commit 1e4f6d5
Show file tree
Hide file tree
Showing 2 changed files with 6 additions and 12 deletions.
2 changes: 0 additions & 2 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -58,9 +58,7 @@

- in `charge.v`
+ definition `charge_of_finite_measure` (instance of `charge`)
+ lemma `cscaleE`
+ lemma `dominates_cscale`
+ lemma `caddE`
+ definition `cpushforward` (instance of `charge`)
+ lemma `dominates_pushforward`
+ lemma `cjordan_posE`
Expand Down
16 changes: 6 additions & 10 deletions theories/charge.v
Original file line number Diff line number Diff line change
Expand Up @@ -396,15 +396,13 @@ Qed.
HB.instance Definition _ := isCharge.Build _ _ _ cscale
cscale0 cscale_finite_measure_function cscale_sigma_additive.

Lemma cscaleE A : cscale A = r%:E * nu A. Proof. by []. Qed.

End charge_scale.

Lemma dominates_cscale d (T : measurableType d) (R : realType)
(mu : set T -> \bar R)
(nu : {charge set T -> \bar R})
(c : R) : nu `<< mu -> cscale c nu `<< mu.
Proof. by move=> numu E mE /numu; rewrite cscaleE => ->//; rewrite mule0. Qed.
Proof. by move=> numu E mE /numu; rewrite /cscale => ->//; rewrite mule0. Qed.

Section charge_add.
Local Open Scope ereal_scope.
Expand Down Expand Up @@ -436,8 +434,6 @@ Qed.
HB.instance Definition _ := isCharge.Build _ _ _ cadd
cadd0 cadd_finite cadd_sigma_additive.

Lemma caddE E : cadd E = n1 E + n2 E. Proof. by []. Qed.

End charge_add.

Lemma dominates_cadd d (T : measurableType d) (R : realType)
Expand All @@ -446,7 +442,7 @@ Lemma dominates_cadd d (T : measurableType d) (R : realType)
nu0 `<< mu -> nu1 `<< mu ->
cadd nu0 nu1 `<< mu.
Proof.
by move=> nu0mu nu1mu A mA A0; rewrite caddE nu0mu// nu1mu// adde0.
by move=> nu0mu nu1mu A mA A0; rewrite /cadd nu0mu// nu1mu// adde0.
Qed.

Section pushforward_charge.
Expand Down Expand Up @@ -916,7 +912,7 @@ Local Definition cjordan_neg : {charge set T -> \bar R} :=
[the charge _ _ of cscale (-1) [the charge _ _ of crestr0 nu mN]].

Lemma cjordan_negE A : cjordan_neg A = - crestr0 nu mN A.
Proof. by rewrite /= cscaleE EFinN mulN1e. Qed.
Proof. by rewrite /= /cscale/= EFinN mulN1e. Qed.

Let positive_set_cjordan_neg E : 0 <= cjordan_neg E.
Proof.
Expand All @@ -943,7 +939,7 @@ Lemma jordan_decomp (A : set T) : measurable A ->
([the charge _ _ of cscale (-1) [the charge _ _ of jordan_neg]])) A.
Proof.
move=> mA.
rewrite caddE cjordan_posE /= cscaleE EFinN mulN1e cjordan_negE oppeK.
rewrite /cadd cjordan_posE /= /cscale EFinN mulN1e cjordan_negE oppeK.
rewrite /crestr0 mem_set// -[in LHS](setIT A).
case: nuPN => _ _ <- PN0; rewrite setIUr chargeU//.
- exact: measurableI.
Expand Down Expand Up @@ -1802,8 +1798,8 @@ exists (fp \- fn); split; first by move=> x; rewrite fin_numB// fpfin fnfin.
exact: integrableB.
move=> E mE; rewrite [LHS](jordan_decomp nuPN mE)// integralB//;
[|exact: (integrableS measurableT)..].
rewrite -fpE ?inE// -fnE ?inE//= caddE jordan_posE jordan_negE.
by rewrite [X in _ + X]/= cscaleE EFinN mulN1e.
rewrite -fpE ?inE// -fnE ?inE//= /cadd/= jordan_posE jordan_negE.
by rewrite /cscale EFinN mulN1e.
Qed.

Definition Radon_Nikodym : T -> \bar R :=
Expand Down

0 comments on commit 1e4f6d5

Please sign in to comment.