Skip to content

Commit

Permalink
path splitting
Browse files Browse the repository at this point in the history
  • Loading branch information
zstone1 committed Nov 6, 2024
1 parent 0fb9f23 commit 38f0a7d
Showing 1 changed file with 38 additions and 6 deletions.
44 changes: 38 additions & 6 deletions theories/function_spaces.v
Original file line number Diff line number Diff line change
Expand Up @@ -2306,6 +2306,17 @@ Definition chain_path {i j : bpTopologicalType} {T : topologicalType}
(f : i -> T) (g : j -> T) : bpwedge i j -> T :=
wedge_fun (fun b => if b return wedge2 i j b -> T then f else g).

Local Lemma chain_path_cts_point {i j : bpTopologicalType} {T : topologicalType}
(f : i -> T) (g : j -> T) :
continuous f ->
continuous g ->
f one = g zero ->
continuous (chain_path f g).
Proof.
move=> cf cg fgE; apply: wedge_fun_continuous => //; first by case.
by case; case; rewrite //=.
Qed.

Section chain_path.
Context {T : topologicalType} {i j : bpTopologicalType} (x y z: T).
Context (p : {path i from x to y}) (q : {path j from y to z}).
Expand Down Expand Up @@ -3093,12 +3104,36 @@ HB.instance Definition _ := isContinuous.Build _ _ set_valIL set_valIL_continuou
End subspacesI.


Section van_kampen.
Section path_cutting.
Context {d} {i : pathDomainType d}.
Local Open Scope quotient_scope.

Local Notation fdg := (@fundamental_groupoid d i).
Local Notation fdg_lift := (@fdg_lift _ i).
Notation "f '<>' g" := (@path_concat _ i _ _ _ f g).

Context {T : topologicalType} (x y z : T).
Context (p : {path i from x to z}).

Lemma path_cut t : p t = y -> exists
(l : {path i from x to y}) (r : {path i from y to z}) (phi : {path i from (zero : i) to one}),
l <> r = reparameterize p phi.
Proof.
pose phi := chain_path (Order.min t) (Order.max t) \o to_wedge.
have : phi zero = zero.
rewrite /phi /chain_path /= ?path_zero ?wedge_fun_wedgei ?min_r ?zero_bot //.
case; case; rewrite //= ?path_zero /= ?min_l ?max_l ?one_top ?zero_bot //.
have : phi one = one.
rewrite /phi /chain_path /= ?path_one ?wedge_fun_wedgei ?max_r ?one_top //.
case; case; rewrite //= ?path_zero /= ?min_l ?max_l ?one_top ?zero_bot //.
have : continuous phi.
move=> ?; apply: continuous_comp; first exact: cts_fun.
apply: chain_path_cts_point.
move=> w; apply: continuous2_cvg => //.


Search Order.min (continuous _).


let l :=

Context {T : topologicalType} (L R : set T).
Hypothesis oL : open L.
Expand All @@ -3107,9 +3142,6 @@ Hypothesis oR : open R.
Let lT := fdg_lift (set_val : L -> T).
Let rT := fdg_lift (set_val : R -> T).

Set Printing All.
Check horner_comp.

Lemma split_path (x y : L) (p : {path i from x to y}) :


Expand Down

0 comments on commit 38f0a7d

Please sign in to comment.