Skip to content

Commit

Permalink
proofs
Browse files Browse the repository at this point in the history
  • Loading branch information
mkerjean committed Sep 14, 2024
1 parent 908b610 commit 403ecee
Showing 1 changed file with 53 additions and 18 deletions.
71 changes: 53 additions & 18 deletions theories/normedtype.v
Original file line number Diff line number Diff line change
Expand Up @@ -804,7 +804,9 @@ HB.factory Record PseudoMetricNormedZmod_Lmodule_isNormedModule (K : numFieldTyp
}.

HB.builders Context K V of PseudoMetricNormedZmod_Lmodule_isNormedModule K V.
(* These lemmas are done latter with more machinery. Move the factory ?*)


(* These lemmas are done latter with more machinery. Can we move this factory down ?*)
Lemma add_continuous : continuous (fun x : V * V => x.1 + x.2).
Proof.
move=> [/= x y]; apply/cvg_ballP => e e0 /=.
Expand All @@ -814,33 +816,66 @@ rewrite !nbhs_simpl /=; split; by apply: nbhsx_ballx; rewrite ?divr_gt0.
rewrite -ball_normE /= /ball_ /= => xy /= [nx ny].
rewrite opprD addrACA (le_lt_trans (ler_normD _ _)) // (@splitr K (e)) ltrD //=.
Qed.

Lemma scale_continuous : continuous (fun z : K^o * V => z.1 *: z.2).
Proof.
move=> [/= k x]; apply/cvg_ballP => e e0 /=.
move=> [/= k x].
apply/cvg_ballP => e e0 /=.
rewrite nearE /= -nbhs_ballE /nbhs_ball /nbhs_ball_ //=.
near +oo_K => M.
pose r := (e/2/M).
near +oo_K=> M.
pose r := (`|e|/2/M).
exists ((ball k r),(ball x r)).
rewrite !nbhs_simpl /=; split; by apply: nbhsx_ballx; rewrite ?divr_gt0.
rewrite -ball_normE /= /ball_ /= => lz /= [nk nx].
rewrite -?(scalerBr, scalerBl).
have := @ball_split _ _ (k *: lz.2) (k*: x) (lz.1 *: lz.2) e; rewrite -ball_normE /=.
move => T; apply: T; rewrite -?(scalerBr, scalerBl) normrZ.
by rewrite (@le_lt_trans _ _ (M * `|x - lz.2|)) ?ler_wpM2r -?ltr_pdivlMl// mulrC.
rewrite !nbhs_simpl /=; split; apply: nbhsx_ballx; rewrite ?divr_gt0 // ?normr_gt0 ?lt0r_neq0 //.
rewrite -ball_normE /= /ball_ /= => lz /= [nk nx].
rewrite -?(scalerBr, scalerBl).
have := @ball_split _ _ (k *: lz.2) (k*: x) (lz.1 *: lz.2) `|e|; rewrite -ball_normE /= real_lter_normr ?gtr0_real //.
have -> : (normr (k *: x - lz.1 *: lz.2) < - e) = false by rewrite ltr_nnorml // oppr_le0 ltW.
rewrite Bool.orb_false_r => T;apply: T; rewrite -?(scalerBr, scalerBl) normrZ.
rewrite (@le_lt_trans _ _ (M * `|x - lz.2|)) ?ler_wpM2r -?ltr_pdivlMl // mulrC //.
rewrite (@le_lt_trans _ _ (`|k - lz.1| * M)) ?ler_wpM2l -?ltr_pdivlMr//.
near: M. admit.
rewrite (@le_trans _ _ (normr (lz.2) + normr x)) // ?lerDl ?normr_ge0 //.
move: nx; rewrite /r => nx.
have H: normr lz.2 <= normr x + `|e|/2/M.
have -> : lz.2 = x - (x -lz.2) by rewrite opprB addrCA subrr addr0.
by rewrite (@le_trans _ _ (normr (x) + normr (x - lz.2))) // ?ler_normB // ?lerD // ltW //.
rewrite (@le_trans _ _ ((normr x + `|e| / 2 / M) + (normr x))) // ?lerD //.
rewrite addrAC.
have H0: M = M^-1 * (M * M). rewrite mulrA mulVf ?mul1r // ?lt0r_neq0 //.
rewrite [X in (_ <= X)]H0.
have -> : (normr x + normr x + `|e| / 2 / M) = M^-1 * ( M* (normr x + normr x) + `|e| / 2).
by rewrite mulrDr mulrA mulVf ?mul1r ?lt0r_neq0 // mulrC.
rewrite ler_wpM2l // ?invr_ge0 // ?ltW // -ltrBrDl -mulrBr.
apply: ltr_pM; rewrite ?ltrBrDl //.
Unshelve. all: by end_near.
Admitted.
Qed.

Lemma locally_convex : exists2 B : set (set V), (forall b, b \in B -> convex b) & basis B.
Proof.
exists [set B | exists x, exists r, B = ball x r].
move=> b; rewrite inE /= => [[x]] [r] -> z y l.
rewrite !inE -!ball_normE /= => zx zy l1.
rewrite opprD scalerDl opprD.
rewrite scale1r [X in (_ + X)]addrC addrA [X in (X - _)]addrA.
rewrite scaleNr opprK -addrA. admit.
rewrite !inE -!ball_normE /= => zx yx l1.
(* have xz : `|z| < r + `|x|. *)
(* have -> : `|z| = `|(z - x) + x| by rewrite -addrA [X in (_+X)]addrC subrr addr0. *)
(* rewrite (@lt_le_trans _ _ (r + normr x )) //. *)
(* rewrite (@le_lt_trans _ _ (normr ((x - z)%R) + normr x)) //. *)
(* rewrite -[in X in (_ <= X)]opprB normrN ler_normD // addrC. *)
(* by rewrite (@ltr_leD _ _ _ (normr x) _ zx) //. *)
(* have xy : `|y| < r + `|x|. *)
(* have -> : `|y| = `|(y - x) + x| by rewrite -addrA [X in (_+X)]addrC subrr addr0. *)
(* rewrite (@lt_le_trans _ _ (r + normr x )) //. *)
(* rewrite (@le_lt_trans _ _ (normr ((y - x)%R) + normr x)) //. *)
(* by rewrite ler_normD // addrC. *)
(* by rewrite (@ltr_leD _ _ _ (normr x) _ yx) //=. *)
have ->: x = l *: x + (1-l) *: x. admit.
have -> :
(l *: x + (1 - l) *: x) - (l *: z + (1 - l) *: y) = (l *: (x-z) + (1 - l) *: (x - y)).
rewrite opprD. rewrite addrCA. admit.
rewrite (@le_lt_trans _ _ ( `|l| * `|x - z| + `|1 - l| * `|x - y|)) //.
by rewrite -!normrZ ?ler_normD //.
rewrite (@lt_trans _ _ ( `|l| * r + `|1 - l| * r )) //.
rewrite ltrD //. rewrite le_lt_pM //. normrN.
have -> : normr (1 -l) = 1 - normr l. admit.
rewrite -mulrDl addrCA subrr addr0.
split => /=.
move => B [x] [r] ->.
rewrite openE -!ball_normE /interior=> y /= bxy.
Expand Down Expand Up @@ -900,7 +935,7 @@ Variable (R : rcfType).
HB.instance Definition _ := GRing.ComAlgebra.copy R R^o.
#[export, non_forgetful_inheritance]
HB.instance Definition _ := Vector.copy R R^o.
#[export, non_forgetful_inheritance]
#[export, non_forgetful_inheritance]
HB.instance Definition _ := NormedModule.copy R R^o.
End rcfType.

Expand Down

0 comments on commit 403ecee

Please sign in to comment.