Skip to content

Commit

Permalink
integral lemmas from the sampling branch (#1424)
Browse files Browse the repository at this point in the history
Co-authored-by: Alessandro Bruni <[email protected]>
  • Loading branch information
affeldt-aist and hoheinzollern authored Dec 4, 2024
1 parent eee7394 commit 47e0e0f
Show file tree
Hide file tree
Showing 3 changed files with 90 additions and 12 deletions.
13 changes: 13 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,13 @@
+ lemma `expectation_def`
+ notation `'M_`

- in `lebesgue_integral.v`:
+ lemmas `integrable_pushforward`, `integral_pushforward`
+ lemma `integral_measure_add`

- in `probability.v`
+ lemma `integral_distribution` (existsing lemma `integral_distribution` has been renamed)

### Changed

- in `lebesgue_integrale.v`
Expand Down Expand Up @@ -55,6 +62,9 @@
+ `mineMr` -> `mine_pMr`
+ `mineMl` -> `mine_pMl`

- in `probability.v`:
+ `integral_distribution` -> `ge0_integral_distribution`

### Generalized

- in `probability.v`:
Expand All @@ -69,6 +79,9 @@
+ definitions `dRV_dom`, `dRV_enum`, `enum_prob`
+ lemmas `distribution_dRV`, `sum_enum_prob`

- in `lebesgue_integral.v`:
+ lemma `measurable_sfunP`

### Deprecated

- in file `lebesgue_integral.v`:
Expand Down
82 changes: 71 additions & 11 deletions theories/lebesgue_integral.v
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ End HBSimple.
Notation "{ 'sfun' aT >-> T }" := (@HBSimple.SimpleFun.type _ aT T) : form_scope.
Notation "[ 'sfun' 'of' f ]" := [the {sfun _ >-> _} of f] : form_scope.

Lemma measurable_sfunP {d} {aT : measurableType d} {rT : realType}
Lemma measurable_sfunP {d d'} {aT : measurableType d} {rT : measurableType d'}
(f : {mfun aT >-> rT}) (Y : set rT) : measurable Y -> measurable (f @^-1` Y).
Proof. by move=> mY; rewrite -[f @^-1` _]setTI; exact: measurable_funP. Qed.

Expand Down Expand Up @@ -2652,7 +2652,7 @@ Qed.

End integral_cst.

Section transfer.
Section ge0_transfer.
Local Open Scope ereal_scope.
Context d1 d2 (X : measurableType d1) (Y : measurableType d2) (R : realType).
Variables (phi : X -> Y) (mphi : measurable_fun setT phi).
Expand Down Expand Up @@ -2698,7 +2698,7 @@ rewrite -ge0_integral_fsum//; last 2 first.
by apply: eq_integral => x _; rewrite fsumEFin// -fimfunE.
Qed.

End transfer.
End ge0_transfer.

Section integral_dirac.
Local Open Scope ereal_scope.
Expand Down Expand Up @@ -4101,6 +4101,70 @@ Qed.

End integralB.

Section transfer.
Context d1 d2 (X : measurableType d1) (Y : measurableType d2) (R : realType).
Variable phi : X -> Y.
Hypothesis mphi : measurable_fun [set: X] phi.
Variable mu : {measure set X -> \bar R}.
Variables f : Y -> \bar R.
Hypotheses (mf : measurable_fun [set: Y] f)
(intf : mu.-integrable [set: X] (f \o phi)).

Lemma integrable_pushforward :
(pushforward mu mphi).-integrable [set: Y] f.
Proof.
apply/integrableP; split => //.
move/integrableP : (intf) => [_]; apply: le_lt_trans.
by rewrite ge0_integral_pushforward//=; exact: measurableT_comp.
Qed.

Local Open Scope ereal_scope.

Lemma integral_pushforward :
\int[pushforward mu mphi]_y f y = \int[mu]_x (f \o phi) x.
Proof.
transitivity (\int[mu]_y ((f^\+ \o phi) \- (f^\- \o phi)) y); last first.
by apply: eq_integral => x _; rewrite [in RHS](funeposneg (f \o phi)).
rewrite integralB//; [|exact: integrable_funepos|exact: integrable_funeneg].
rewrite -[X in _ = X - _]ge0_integral_pushforward//; last first.
exact: measurable_funepos.
rewrite -[X in _ = _ - X]ge0_integral_pushforward//; last first.
exact: measurable_funeneg.
rewrite -integralB//=; last first.
- by apply: integrable_funeneg => //=; exact: integrable_pushforward.
- by apply: integrable_funepos => //=; exact: integrable_pushforward.
- by apply/eq_integral => x _; rewrite /= [in LHS](funeposneg f).
Qed.

End transfer.

Section integral_measure_add.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType)
(m1 m2 : {measure set T -> \bar R}) (D : set T).
Hypothesis mD : measurable D.
Variable f : T -> \bar R.
Hypothesis intf1 : m1.-integrable D f.
Hypothesis intf2 : m2.-integrable D f.
Hypothesis mf : measurable_fun D f.

Lemma integral_measure_add : \int[measure_add m1 m2]_(x in D) f x =
\int[m1]_(x in D) f x + \int[m2]_(x in D) f x.
Proof.
transitivity (\int[m1]_(x in D) (f^\+ \- f^\-) x +
\int[m2]_(x in D) (f^\+ \- f^\-) x); last first.
by congr +%E; apply: eq_integral => x _; rewrite [in RHS](funeposneg f).
rewrite integralB//; [|exact: integrable_funepos|exact: integrable_funeneg].
rewrite integralB//; [|exact: integrable_funepos|exact: integrable_funeneg].
rewrite addeACA -ge0_integral_measure_add//; last first.
by apply: measurable_funepos; exact: measurable_int intf1.
rewrite -oppeD; last by rewrite ge0_adde_def// inE integral_ge0.
rewrite -ge0_integral_measure_add// 1?integralE//.
by apply: measurable_funeneg; exact: measurable_int intf1.
Qed.

End integral_measure_add.

Section negligible_integral.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType)
Expand Down Expand Up @@ -4956,19 +5020,16 @@ Variable m2 : {sigma_finite_measure set T2 -> \bar R}.
Implicit Types A : set (T1 * T2).

Let pm10 : (m1 \x m2) set0 = 0.
Proof. by rewrite [LHS]integral0_eq// => x/= _; rewrite xsection0 measure0. Qed.
Proof. by rewrite [LHS]integral0_eq// => x/= _; rewrite xsection0. Qed.

Let pm1_ge0 A : 0 <= (m1 \x m2) A.
Proof.
by apply: integral_ge0 => // *; exact/measure_ge0/measurable_xsection.
Qed.
Proof. by apply: integral_ge0 => // *. Qed.

Let pm1_sigma_additive : semi_sigma_additive (m1 \x m2).
Proof.
move=> F mF tF mUF.
rewrite [X in _ --> X](_ : _ = \sum_(n <oo) (m1 \x m2) (F n)).
apply/cvg_closeP; split; last by rewrite closeE.
by apply: is_cvg_nneseries => *; exact: integral_ge0.
by apply/cvg_closeP; split; [exact: is_cvg_nneseries|rewrite closeE].
rewrite -integral_nneseries//; last by move=> n; exact: measurable_fun_xsection.
apply: eq_integral => x _; apply/esym/cvg_lim => //=; rewrite xsection_bigcup.
apply: (measure_sigma_additive _ (trivIset_xsection tF)) => ?.
Expand Down Expand Up @@ -5027,8 +5088,7 @@ HB.instance Definition _ := Measure_isSigmaFinite.Build _ _ _ (m1 \x m2)

Lemma product_measure_unique
(m' : {measure set [the semiRingOfSetsType _ of T1 * T2] -> \bar R}) :
(forall A1 A2, measurable A1 -> measurable A2 ->
m' (A1 `*` A2) = m1 A1 * m2 A2) ->
(forall A B, measurable A -> measurable B -> m' (A `*` B) = m1 A * m2 B) ->
forall X : set (T1 * T2), measurable X -> (m1 \x m2) X = m' X.
Proof.
move=> m'E.
Expand Down
7 changes: 6 additions & 1 deletion theories/probability.v
Original file line number Diff line number Diff line change
Expand Up @@ -130,11 +130,16 @@ Lemma probability_distribution (X : {RV P >-> T'}) r :
P [set x | X x = r] = distribution P X [set r].
Proof. by []. Qed.

Lemma integral_distribution (X : {RV P >-> T'}) (f : T' -> \bar R) :
Lemma ge0_integral_distribution (X : {RV P >-> T'}) (f : T' -> \bar R) :
measurable_fun [set: T'] f -> (forall y, 0 <= f y) ->
\int[distribution P X]_y f y = \int[P]_x (f \o X) x.
Proof. by move=> mf f0; rewrite ge0_integral_pushforward. Qed.

Lemma integral_distribution (X : {RV P >-> T'}) (f : T' -> \bar R) :
measurable_fun [set: T'] f -> P.-integrable [set: T] (f \o X) ->
\int[distribution P X]_y f y = \int[P]_x (f \o X) x.
Proof. by move=> mf intf; rewrite integral_pushforward. Qed.

End transfer_probability.

HB.lock Definition expectation {d} {T : measurableType d} {R : realType}
Expand Down

0 comments on commit 47e0e0f

Please sign in to comment.