Skip to content

Commit

Permalink
Metric Spaces are Normal (#1002)
Browse files Browse the repository at this point in the history
* equivalences of normal

* fixing tietze and pseudometrics are normal

* normal_spaceP w.o. R : realType paramater

---------

Co-authored-by: Reynald Affeldt <[email protected]>
  • Loading branch information
zstone1 and affeldt-aist authored Aug 22, 2023
1 parent 909e6c1 commit 4fed108
Show file tree
Hide file tree
Showing 5 changed files with 236 additions and 50 deletions.
13 changes: 13 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,13 @@
- in `lebesgue_measure.v`:
+ lemma `measurable_ball`

- in file `normedtype.v`,
+ new lemmas `normal_openP`, `uniform_regular`,
`regular_openP`, and `pseudometric_normal`.
- in file `topology.v`,
+ new definition `regular_space`.
+ new lemma `ent_closure`.

### Changed

- `mnormalize` moved from `kernel.v` to `measure.v` and generalized
Expand All @@ -43,8 +50,14 @@
+ rewrote `negligible_integral` to replace the positivity condition
with an integrability condition, and added `ge0_negligible_integral`.

- removed dependency in `Rstruct.v` on `normedtype.v`:
- added dependency in `normedtype.v` on `Rstruct.v`:

### Renamed

- in `normedtype.v`:
+ `normal_urysohnP` -> `normal_separatorP`.

### Generalized

### Deprecated
Expand Down
5 changes: 2 additions & 3 deletions theories/Rstruct.v
Original file line number Diff line number Diff line change
Expand Up @@ -695,7 +695,7 @@ End bigmaxr.

End ssreal_struct_contd.

Require Import signed topology normedtype.
Require Import signed topology.

Section analysis_struct.

Expand Down Expand Up @@ -764,8 +764,7 @@ Lemma continuity_pt_dnbhs f x :
continuity_pt f x <->
forall eps, 0 < eps -> x^' (fun u => `|f x - f u| < eps).
Proof.
rewrite continuity_pt_cvg' (@cvgrPdist_lt _ [normedModType _ of R^o]).
exact.
by rewrite continuity_pt_cvg' -filter_fromP cvg_ballP -filter_fromP.
Qed.

Lemma nbhs_pt_comp (P : R -> Prop) (f : R -> R) (x : R) :
Expand Down
220 changes: 193 additions & 27 deletions theories/normedtype.v
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
From mathcomp Require Import all_ssreflect ssralg ssrint ssrnum finmap matrix.
From mathcomp Require Import rat interval zmodp vector fieldext falgebra.
From mathcomp Require Import mathcomp_extra boolp classical_sets functions.
From mathcomp Require Import cardinality set_interval.
From mathcomp Require Import cardinality set_interval Rstruct.
Require Import ereal reals signed topology prodnormedzmodule.

(******************************************************************************)
Expand Down Expand Up @@ -1784,6 +1784,89 @@ Arguments cvgr0_norm_le {_ _ _ F FF}.
note="use `cvgrPdist_lt` or a variation instead")]
Notation cvg_distP := fcvgrPdist_lt.

(* NB: the following section used to be in Rstruct.v *)
Require Rstruct.

Section analysis_struct.

Import Rdefinitions.
Import Rstruct.

Canonical R_pointedType := [pointedType of R for pointed_of_zmodule R_ringType].
Canonical R_filteredType :=
[filteredType R of R for filtered_of_normedZmod R_normedZmodType].
Canonical R_topologicalType : topologicalType := TopologicalType R
(topologyOfEntourageMixin
(uniformityOfBallMixin
(@nbhs_ball_normE _ R_normedZmodType)
(pseudoMetric_of_normedDomain R_normedZmodType))).
Canonical R_uniformType : uniformType :=
UniformType R
(uniformityOfBallMixin (@nbhs_ball_normE _ R_normedZmodType)
(pseudoMetric_of_normedDomain R_normedZmodType)).
Canonical R_pseudoMetricType : pseudoMetricType R_numDomainType :=
PseudoMetricType R (pseudoMetric_of_normedDomain R_normedZmodType).

(* TODO: express using ball?*)
Lemma continuity_pt_nbhs (f : R -> R) x :
Ranalysis1.continuity_pt f x <->
forall eps : {posnum R}, nbhs x (fun u => `|f u - f x| < eps%:num).
Proof.
split=> [fcont e|fcont _/RltP/posnumP[e]]; last first.
have [_/posnumP[d] xd_fxe] := fcont e.
exists d%:num; split; first by apply/RltP; have := [gt0 of d%:num].
by move=> y [_ /RltP yxd]; apply/RltP/xd_fxe; rewrite /= distrC.
have /RltP egt0 := [gt0 of e%:num].
have [_ [/RltP/posnumP[d] dx_fxe]] := fcont e%:num egt0.
exists d%:num => //= y xyd; case: (eqVneq x y) => [->|xney].
by rewrite subrr normr0.
apply/RltP/dx_fxe; split; first by split=> //; apply/eqP.
by have /RltP := xyd; rewrite distrC.
Qed.

Lemma continuity_pt_cvg (f : R -> R) (x : R) :
Ranalysis1.continuity_pt f x <-> {for x, continuous f}.
Proof.
eapply iff_trans; first exact: continuity_pt_nbhs.
apply iff_sym.
have FF : Filter (f @ x).
by typeclasses eauto.
(*by apply fmap_filter; apply: @filter_filter' (locally_filter _).*)
case: (@fcvg_ballP _ _ (f @ x) FF (f x)) => {FF}H1 H2.
(* TODO: in need for lemmas and/or refactoring of already existing lemmas (ball vs. Rabs) *)
split => [{H2} - /H1 {}H1 eps|{H1} H].
- have {H1} [//|_/posnumP[x0] Hx0] := H1 eps%:num.
exists x0%:num => //= Hx0' /Hx0 /=.
by rewrite /= distrC; apply.
- apply H2 => _ /posnumP[eps]; move: (H eps) => {H} [_ /posnumP[x0] Hx0].
exists x0%:num => //= y /Hx0 /= {}Hx0.
by rewrite /ball /= distrC.
Qed.

Lemma continuity_ptE (f : R -> R) (x : R) :
Ranalysis1.continuity_pt f x <-> {for x, continuous f}.
Proof. exact: continuity_pt_cvg. Qed.

Local Open Scope classical_set_scope.

Lemma continuity_pt_cvg' f x :
Ranalysis1.continuity_pt f x <-> f @ x^' --> f x.
Proof. by rewrite continuity_ptE continuous_withinNx. Qed.

Lemma continuity_pt_dnbhs f x :
Ranalysis1.continuity_pt f x <->
forall eps, 0 < eps -> x^' (fun u => `|f x - f u| < eps).
Proof.
rewrite continuity_pt_cvg' (@cvgrPdist_lt _ [normedModType _ of R^o]).
exact.
Qed.

Lemma nbhs_pt_comp (P : R -> Prop) (f : R -> R) (x : R) :
nbhs (f x) P -> Ranalysis1.continuity_pt f x -> \near x, P (f x).
Proof. by move=> Lf /continuity_pt_cvg; apply. Qed.

End analysis_struct.

Section open_closed_sets.
(* TODO: duplicate theory within the subspace topology of Num.real
in a numDomainType *)
Expand Down Expand Up @@ -4006,7 +4089,7 @@ Qed.
End urysohn_facts.
End topological_urysohn_separator.

Lemma uniform_separatorW {T : uniformType} (A B : set T) :
Lemma uniform_separatorW {T : uniformType} (A B : set T) :
(exists2 E, entourage E & A `*` B `&` E = set0) ->
uniform_separator A B.
Proof. by case=> E entE AB0; exists (Uniform.class T), E; split => // ?. Qed.
Expand Down Expand Up @@ -4194,7 +4277,6 @@ Qed.

End normal_uniform_separators.
End Urysohn.

Lemma uniform_separatorP {T : topologicalType} {R : realType} (A B : set T) :
uniform_separator A B <->
exists (f : T -> R), [/\ continuous f, range f `<=` `[0, 1],
Expand All @@ -4215,34 +4297,118 @@ exists (Uniform.class T'), ([set xy | ball (f xy.1) 1 (f xy.2)]); split.
exact: open_nbhs_nbhs.
Qed.

Lemma normal_urysohnP {T : topologicalType} {R : realType} :
normal_space T <->
forall (A B : set T), closed A -> closed B ->
A `&` B = set0 -> uniform_separator A B.
Proof.
split; first by move=> *; exact: normal_uniform_separator.
Section normalP.
Context {T : topologicalType}.

Let normal_spaceP : [<->
(* 0 *) normal_space T;
(* 1 *) forall (A B : set T), closed A -> closed B -> A `&` B = set0 ->
uniform_separator A B;
(* 2 *) forall (A B : set T), closed A -> closed B -> A `&` B = set0 ->
exists U V, [/\ open U, open V, A `<=` U, B `<=` V & U `&` V = set0] ].
Proof.
pose R := Rstruct.real_realType.
tfae; first by move=> ?; exact: normal_uniform_separator.
- move=> + A B clA clB AB0 => /(_ _ _ clA clB AB0) /(@uniform_separatorP _ R).
case=> f [cf f01 /imsub1P/subset_trans fa0 /imsub1P/subset_trans fb1].
exists (f@^-1` `]-1, 1/2[), (f @^-1` `]1/2, 2[); split.
+ by apply: open_comp; [|exact: interval_open].
+ by apply: open_comp; [|exact: interval_open].
+ by apply: fa0 => x/= ->; rewrite (@in_itv _ R)/=; apply/andP; split.
+ apply: fb1 => x/= ->; rewrite (@in_itv _ R)/= ltr_pdivr_mulr// mul1r.
by rewrite ltr1n.
+ rewrite -preimage_setI ?set_itvoo -subset0 => t [] /andP [_ +] /andP [+ _].
by move=> /lt_trans /[apply]; rewrite ltxx.
move=> + A clA B /set_nbhsP [C [oC AC CB]].
have AC0 : A `&` ~` C = set0 by apply/disjoints_subset; rewrite setCK.
move=> /(_ _ _ clA (open_closedC oC) AC0).
move=> /(@uniform_separatorP _ R) [f [cf f01 fa0 fc1]].
exists (f@^-1` `]-1, 1/2]).
apply (@filterS _ _ _ (f @^-1` (`]-1, 1/2[))).
by apply: preimage_subset; first exact: subset_itvW.
apply/set_nbhsP; exists (f @^-1` `]-1, 1/2[); split => //.
by apply: open_comp => //; exact: interval_open.
by rewrite set_itvoo=> x Ax /=; rewrite (imsub1 fa0)//; apply/andP; split.
have -> : f @^-1` `]-1, 1/2] = f @^-1` `[0, 1/2].
rewrite eqEsubset set_itvcc set_itvoc; split.
by move=> x /= /andP [_ ->]; rewrite (itvP (f01 _ _)).
by apply: preimage_subset => z /= /andP[z0 ->]; rewrite (lt_le_trans _ z0).
have: closed (f @^-1` `[0, 1/2])
by apply: closed_comp => //; apply: interval_closed.
rewrite closure_id => <-.
apply: (subset_trans _ CB); apply/subsetCP.
rewrite preimage_setC set_itvcc => x nCx /=; apply/negP.
by rewrite (imsub1 fc1)// ler01/= -ltNge [ltRHS]splitr ltr_addr.
case/(_ _ _ clA (open_closedC oC) AC0) => U [V] [oU oV AU nCV UV0].
exists (~` closure V).
apply/set_nbhsP; exists U; split => //.
apply/subsetCr; have := open_closedC oU; rewrite closure_id => ->.
by apply/closure_subset/disjoints_subset; rewrite setIC.
apply/(subset_trans _ CB)/subsetCP; apply: (subset_trans nCV).
apply/subsetCr; have := open_closedC oV; rewrite closure_id => ->.
exact/closure_subset/subsetC/subset_closure.
Qed.

Lemma normal_openP : normal_space T <->
forall (A B : set T), closed A -> closed B -> A `&` B = set0 ->
exists U V, [/\ open U, open V, A `<=` U, B `<=` V & U `&` V = set0].
Proof. exact: (normal_spaceP 0%N 2%N). Qed.

Lemma normal_separatorP : normal_space T <->
forall (A B : set T), closed A -> closed B -> A `&` B = set0 ->
uniform_separator A B.
Proof. exact: (normal_spaceP 0%N 1%N). Qed.

End normalP.

Section pseudometric_normal.

Lemma uniform_regular {X : uniformType} : @regular_space X.
Proof.
move=> x A; rewrite /= -nbhs_entourageE => -[E entE].
move/(subset_trans (ent_closure entE)) => ExA.
by exists [set y | split_ent E (x, y)]; first by exists (split_ent E).
Qed.

Lemma regular_openP {T : topologicalType} (x : T) :
{for x, @regular_space T} <-> forall A, closed A -> ~ A x ->
exists U V : set T, [/\ open U, open V, U x, A `<=` V & U `&` V = set0].
Proof.
split.
move=> + A clA nAx => /(_ (~` A)) [].
by apply: open_nbhs_nbhs; split => //; exact: closed_openC.
move=> U Ux /subsetC; rewrite setCK => AclU; exists (interior U).
exists (~` closure U) ; split => //; first exact: open_interior.
exact/closed_openC/closed_closure.
apply/disjoints_subset; rewrite setCK.
exact: (subset_trans (@interior_subset _ _) (@subset_closure _ _)).
move=> + A Ax => /(_ (~` interior A)) []; [|exact|].
exact/open_closedC/open_interior.
move=> U [V] [oU oV Ux /subsetC cAV /disjoints_subset UV]; exists U.
exact/open_nbhs_nbhs.
apply: (subset_trans (closure_subset UV)).
move/open_closedC/closure_id : oV => <-.
by apply: (subset_trans cAV); rewrite setCK; exact: interior_subset.
Qed.

Lemma pseudometric_normal {R : realType} {X : pseudoMetricType R} :
normal_space X.
Proof.
apply/normal_openP => A B clA clB AB0.
have eps' (D : set X) : closed D -> forall x, exists eps : {posnum R}, ~ D x ->
ball x eps%:num `&` D = set0.
move=> clD x; have [nDx|?] := pselect (~ D x); last by exists 1%:pos.
have /regular_openP/(_ _ clD) [//|] := @uniform_regular X x.
move=> U [V] [+ oV] Ux /subsetC BV /disjoints_subset UV0.
rewrite openE /interior => /(_ _ Ux); rewrite -nbhs_ballE => -[].
move => _/posnumP[eps] beU; exists eps => _; apply/disjoints_subset.
exact: (subset_trans beU (subset_trans UV0 _)).
pose epsA x := projT1 (cid (eps' _ clB x)).
pose epsB x := projT1 (cid (eps' _ clA x)).
exists (\bigcup_(x in A) interior (ball x ((epsA x)%:num / 2)%:pos%:num)).
exists (\bigcup_(x in B) interior (ball x ((epsB x)%:num / 2)%:pos%:num)).
split.
- by apply: bigcup_open => ? ?; exact: open_interior.
- by apply: bigcup_open => ? ?; exact: open_interior.
- by move=> x ?; exists x => //; exact: nbhsx_ballx.
- by move=> y ?; exists y => //; exact: nbhsx_ballx.
- apply/eqP/negPn/negP/set0P => -[z [[x Ax /interior_subset Axe]]].
case=> y By /interior_subset Bye; have nAy : ~ A y.
by move: AB0; rewrite setIC => /disjoints_subset; exact.
have nBx : ~ B x by move/disjoints_subset: AB0; exact.
have [|/ltW] := leP ((epsA x)%:num / 2) ((epsB y)%:num / 2).
move/ball_sym: Axe => /[swap] /le_ball /[apply] /(ball_triangle Bye).
rewrite -splitr => byx; have := projT2 (cid (eps' _ clA y)) nAy.
by rewrite -subset0; apply; split; [exact: byx|].
move/ball_sym: Bye =>/[swap] /le_ball /[apply] /(ball_triangle Axe).
rewrite -splitr => byx; have := projT2 (cid (eps' _ clB x)) nBx.
by rewrite -subset0; apply; split; [exact: byx|].
Qed.

End pseudometric_normal.

Section open_closed_sets_ereal.
Variable R : realFieldType (* TODO: generalize to numFieldType? *).
Local Open Scope ereal_scope.
Expand Down
33 changes: 14 additions & 19 deletions theories/numfun.v
Original file line number Diff line number Diff line change
Expand Up @@ -403,27 +403,23 @@ Context {X : topologicalType} {R : realType}.

Local Notation "3" := 3%:R : ring_scope.

Hypothesis urysohn_ext : forall A B,
closed A -> closed B -> A `&` B = set0 ->
exists f : X -> R, [/\ continuous f,
f @` A `<=` [set 0], f @` B `<=` [set 1] & range f `<=` `[0, 1]].
Hypothesis normalX : normal_space X.

Lemma urysohn_ext_itv A B x y :
closed A -> closed B -> A `&` B = set0 -> x < y ->
exists f : X -> R, [/\ continuous f,
f @` A `<=` [set x], f @` B `<=` [set y] & range f `<=` `[x, y]].
Proof.
move=> clA clB AB0 xy; have [f [ctsf f0 f1 f01]] := urysohn_ext clA clB AB0.
move=> cA cB A0 xy; move/normal_separatorP : normalX => urysohn_ext.
have /(@uniform_separatorP _ R)[f [cf f01 f0 f1]] := urysohn_ext _ _ cA cB A0.
pose g : X -> R := line_path x y \o f; exists g; split; rewrite /g /=.
- move=> t; apply: continuous_comp; first exact: ctsf.
- move=> t; apply: continuous_comp; first exact: cf.
apply: (@continuousD R [normedModType R of R^o]).
apply: continuousM; last exact: cvg_cst.
by apply: (@continuousB R [normedModType R of R^o]) => //; exact: cvg_cst.
by apply: continuousM; [exact: cvg_id|exact: cvg_cst].
- rewrite -image_comp; apply: (subset_trans (image_subset _ f0)).
by rewrite image_set1 line_path0.
- rewrite -image_comp; apply: (subset_trans (image_subset _ f1)).
by rewrite image_set1 line_path1.
- by rewrite -image_comp => z /= [? /f0 -> <-]; rewrite line_path0.
- by rewrite -image_comp => z /= [? /f1 -> <-]; rewrite line_path1.
- rewrite -image_comp; apply: (subset_trans (image_subset _ f01)).
by rewrite range_line_path.
Qed.
Expand All @@ -441,18 +437,18 @@ Local Lemma tietze_step' (f : X -> R) (M : R) :
(forall x, `|g x| <= 1/3 * M)].
Proof.
move: M => _/posnumP[M] ctsf fA1.
have [] := @urysohn_ext_itv (A `&` f @^-1` `]-oo, -(1/3) * M%:num])
have [] := @urysohn_ext_itv (A `&` f @^-1` `]-oo, -(1/3) * M%:num])
(A `&` f @^-1` `[1/3 * M%:num,+oo[) (-(1/3) * M%:num) (1/3 * M%:num).
- by rewrite closed_setSI; exact: closed_comp.
- by rewrite closed_setSI; apply: closed_comp => //; exact: interval_closed.
- rewrite setIACA -preimage_setI eqEsubset; split => z // [_ []].
rewrite !set_itvE/= => /[swap] /le_trans /[apply].
by rewrite leNgt mulNr gtr_opp// mulr_gt0// divr_gt0.
- by rewrite mulNr gtr_opp// mulr_gt0//.
- by rewrite mulNr gtr_opp// mulr_gt0.
move=> g [ctsg gL3 gR3 grng]; exists g; split => //; first last.
by move=> x; rewrite ler_norml -mulNr; apply: grng; exists x.
move=> x Ax; have := fA1 _ Ax; rewrite 2!ler_norml => /andP[Mfx fxM].
have [xL|xL] := lerP (f x) (-(1/3) * M%:num).
have [xL|xL] := leP (f x) (-(1/3) * M%:num).
have: [set g x | x in A `&` f@^-1` `]-oo, -(1/3) * M%:num]] (g x) by exists x.
move/gL3=> ->; rewrite !mulNr opprK; apply/andP; split.
by rewrite -ler_subl_addr -opprD -2!mulrDl natr1 divrr ?unitfE// mul1r.
Expand All @@ -479,9 +475,9 @@ Let tietze_step (f : X -> R) M :
& forall x, `|g x| <= 1/3 * M ]}.
Proof.
apply: cid.
case : (pselect ({within A, continuous f})); last by move => ?; exists point.
case : (pselect (0 < M)); last by move => ?; exists point.
case : (pselect (forall x, A x -> `|f x| <= M)); last by move => ?; exists point.
have [|?] := pselect ({within A, continuous f}); last by exists point.
have [|?] := ltP 0 M; last by exists point.
have [|?] := pselect (forall x, A x -> `|f x| <= M); last by exists point.
by move=> bd pm cf; have [g ?] := tietze_step' pm cf bd; exists g.
Qed.

Expand Down Expand Up @@ -523,13 +519,12 @@ have cvgh' : cvg (h_ @ \oo).
rewrite (le_lt_trans (ler_norm_sum _ _ _))//.
rewrite (le_lt_trans (ler_sum _ (fun i _ => g_bd i t)))// -mulr_sumr.
rewrite -(subnKC MN) geometric_partial_tail.
pose L :=
(1/3) * M%:num * ((2/3) ^+ m / (1 - (2/3))).
pose L := (1/3) * M%:num * ((2/3) ^+ m / (1 - (2/3))).
apply: (@le_lt_trans _ _ L); first by rewrite ler_pmul2l // geometric_le_lim.
rewrite /L onem_twothirds.
rewrite [_ ^+ _ * _ ^-1]mulrC mulrA -[x in x < _]ger0_norm; last by [].
near: m; near_simpl; move: eps epos.
by apply: (cvgr0_norm_lt (fun _ => _ : R^o)); apply: cvg_geometric.
by apply: (cvgr0_norm_lt (fun _ => _ : R^o)); exact: cvg_geometric.
have cvgh : {uniform, h_ @ \oo --> lim (h_ @ \oo)}.
by move=> ?; rewrite /= uniform_nbhsT; exact: cvgh'.
exists (lim (h_ @ \oo)); split.
Expand Down
Loading

0 comments on commit 4fed108

Please sign in to comment.