Skip to content

Commit

Permalink
rebase, minor simplifications
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Oct 27, 2023
1 parent 384c3be commit 5756c76
Show file tree
Hide file tree
Showing 4 changed files with 131 additions and 218 deletions.
79 changes: 1 addition & 78 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,86 +33,9 @@
`wlength_sigma_sub_additive`, `wlength_sigma_finite`
+ measure instance of `hlength`
+ definition `lebesgue_stieltjes_measure`
- in `kernel.v`:
+ `kseries` is now an instance of `Kernel_isSFinite_subdef`
- in `classical_sets.v`:
+ lemma `setU_id2r`
- in `lebesgue_measure.v`:
+ lemma `compact_measurable`

- in `measure.v`:
+ lemmas `outer_measure_subadditive`, `outer_measureU2`

- in `lebesgue_measure.v`:
+ declare `lebesgue_measure` as a `SigmaFinite` instance
+ lemma `lebesgue_regularity_inner_sup`
- in `convex.v`:
+ lemmas `conv_gt0`, `convRE`

- in `exp.v`:
+ lemmas `concave_ln`, `conjugate_powR`

- in file `lebesgue_integral.v`,
+ new lemmas `integral_le_bound`, `continuous_compact_integrable`, and
`lebesgue_differentiation_continuous`.

- in `normedtype.v`:
+ lemmas `open_itvoo_subset`, `open_itvcc_subset`

- in `lebesgue_measure.v`:
+ lemma `measurable_ball`

- in file `normedtype.v`,
+ new lemmas `normal_openP`, `uniform_regular`,
`regular_openP`, and `pseudometric_normal`.
- in file `topology.v`,
+ new definition `regular_space`.
+ new lemma `ent_closure`.

- in `lebesgue_measure.v`:
+ lemma `measurable_mulrr`

- in `constructive_ereal.v`:
+ lemma `eqe_pdivr_mull`

- new file `hoelder.v`:
+ definition `Lnorm`, notations `'N[mu]_p[f]`, `'N_p[f]`
+ lemmas `Lnorm1`, `Lnorm_ge0`, `eq_Lnorm`, `Lnorm_eq0_eq0`
+ lemma `hoelder`

- in file `lebesgue_integral.v`,
+ new lemmas `simple_bounded`, `measurable_bounded_integrable`,
`compact_finite_measure`, `approximation_continuous_integrable`

- in `sequences.v`:
+ lemma `cvge_harmonic`

- in `mathcomp_extra.v`:
+ lemmas `le_bigmax_seq`, `bigmax_sup_seq`

- in `constructive_ereal.v`:
+ lemma `bigmaxe_fin_num`
- in `ereal.v`:
+ lemmas `uboundT`, `supremumsT`, `supremumT`, `ereal_supT`, `range_oppe`,
`ereal_infT`

- in `measure.v`:
+ definition `ess_sup`, lemma `ess_sup_ge0`
- in `convex.v`:
+ definition `convex_function`

- in `exp.v`:
+ lemmas `ln_le0`, `ger_powR`, `ler1_powR`, `le1r_powR`, `ger1_powR`,
`ge1r_powR`, `ge1r_powRZ`, `le1r_powRZ`

- in `hoelder.v`:
+ lemmas `lnormE`, `hoelder2`, `convex_powR`

- in `lebesgue_integral.v`:
+ lemma `ge0_integral_count`

- in `exp.v`:
+ lemmas `powRDm1`, `poweRN`, `poweR_lty`, `lty_powerRy`, `gt0_ler_poweR`
+ lemmas `powRDm1`, `fin_num_poweR`, poweRN`, `poweR_lty`, `lty_powerRy`, `gt0_ler_poweR`

- in `mathcomp_extra.v`:
+ lemma `oneminv`
Expand Down
4 changes: 3 additions & 1 deletion classical/mathcomp_extra.v
Original file line number Diff line number Diff line change
Expand Up @@ -1016,6 +1016,8 @@ Arguments max_fun {T R} _ _ _ /.
(* End of mathComp > 1.16 additions *)
(************************************)

Reserved Notation "`1- x" (format "`1- x", at level 2).

Section onem.
Variable R : numDomainType.
Implicit Types r : R.
Expand Down Expand Up @@ -1065,7 +1067,7 @@ Qed.
End onem.
Notation "`1- r" := (onem r) : ring_scope.

Lemma oneminv (F : numFieldType) (x : F) : x != 0 -> `1- (x^-1) = (x-1)/x.
Lemma oneminv (F : numFieldType) (x : F) : x != 0 -> `1- (x^-1) = (x - 1) / x.
Proof. by move=> ?; rewrite mulrDl divff// mulN1r. Qed.

Lemma lez_abs2 (a b : int) : 0 <= a -> a <= b -> (`|a| <= `|b|)%N.
Expand Down
32 changes: 16 additions & 16 deletions theories/exp.v
Original file line number Diff line number Diff line change
Expand Up @@ -769,12 +769,8 @@ Qed.

Lemma powRDm1 (x p : R) : 0 <= x -> 0 < p -> x * x `^ (p - 1) = x `^ p.
Proof.
move=> x0 p0.
have [->|xneq0] := eqVneq x 0.
by rewrite mul0r powR0// gt_eqF.
rewrite -{1}(@powRr1 x)// -powRD.
by rewrite addrCA subrr addr0.
by rewrite xneq0 implybT.
rewrite le_eqVlt => /predU1P[<- p0|x0 p0]; first by rewrite mul0r powR0 ?gt_eqF.
by rewrite -{1}(powRr1 (ltW x0))// -powRD addrCA subrr addr0// gt_eqF.
Qed.

Lemma powRN x r : x `^ (- r) = (x `^ r)^-1.
Expand Down Expand Up @@ -892,8 +888,8 @@ Proof.
by move: x => [x'| |]//= x0; rewrite ?powRr1// (negbTE (oner_neq0 _)).
Qed.

Lemma poweRN (x : \bar R) r : x \is a fin_num -> x `^ (- r) = (((fine x) `^ r)^-1)%:E.
Proof. case: x => // x xf. by rewrite poweR_EFin powRN. Qed.
Lemma poweRN x r : x \is a fin_num -> x `^ (- r) = (fine x `^ r)^-1%:E.
Proof. by case: x => // x xf; rewrite poweR_EFin powRN. Qed.

Lemma poweRNyr r : r != 0%R -> -oo `^ r = 0.
Proof. by move=> r0 /=; rewrite (negbTE r0). Qed.
Expand All @@ -904,14 +900,14 @@ Proof. by case: x => [x| |] //=; case: ifP. Qed.
Lemma eqy_poweR x r : (0 < r)%R -> x = +oo -> x `^ r = +oo.
Proof. by move: x => [| |]//= r0 _; rewrite gt_eqF. Qed.

Lemma poweR_lty (a : \bar R) (r : R) : a < +oo -> a `^ r < +oo.
Lemma poweR_lty x r : x < +oo -> x `^ r < +oo.
Proof.
by move: a => [a| | _]//=; rewrite ?ltry//; case: ifPn => // _; rewrite ltry.
by move: x => [x| |]//=; rewrite ?ltry//; case: ifPn => // _; rewrite ltry.
Qed.

Lemma lty_poweRy (a : \bar R) (r : R) : r != 0%R -> a `^ r < +oo -> a < +oo.
Lemma lty_poweRy x r : r != 0%R -> x `^ r < +oo -> x < +oo.
Proof.
by move=> r0; move: a => [a| | _]//=; rewrite ?ltry// (negbTE r0).
by move=> r0; move: x => [x| | _]//=; rewrite ?ltry// (negbTE r0).
Qed.

Lemma poweR0r r : r != 0%R -> 0 `^ r = 0.
Expand Down Expand Up @@ -950,14 +946,18 @@ Proof. by move=> + /eqP => /poweR_eq0-> /andP[/eqP]. Qed.
Lemma gt0_ler_poweR (r : R) : (0 <= r)%R ->
{in `[0, +oo] &, {homo poweR ^~ r : x y / x <= y >-> x <= y}}.
Proof.
move=> r0 x y.
case: x => //= [x /[1!in_itv]/= /andP[xint _]| _ _].
move=> r0 + y; case=> //= [x /[1!in_itv]/= /andP[xint _]| _ _].
- case: y => //= [y /[1!in_itv]/= /andP[yint _] xy| _ _].
- rewrite !lee_fin ge0_ler_powR//.
- by case: eqP => [->|]; rewrite ?powRr0 ?leey.
+ by rewrite !lee_fin ge0_ler_powR.
+ by case: eqP => [->|]; rewrite ?powRr0 ?leey.
- by rewrite leye_eq => /eqP ->.
Qed.

Lemma fin_num_poweR x r : x \is a fin_num -> x `^ r \is a fin_num.
Proof.
by move=> xfin; rewrite ge0_fin_numE ?poweR_lty ?ltey_eq ?xfin// poweR_ge0.
Qed.

Lemma poweRM x y r : 0 <= x -> 0 <= y -> (x * y) `^ r = x `^ r * y `^ r.
Proof.
have [->|rN0] := eqVneq r 0%R; first by rewrite !poweRe0 mule1.
Expand Down
Loading

0 comments on commit 5756c76

Please sign in to comment.