Skip to content

Commit

Permalink
gen section mfun
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Jul 5, 2024
1 parent 399dba8 commit 5867064
Show file tree
Hide file tree
Showing 2 changed files with 19 additions and 7 deletions.
6 changes: 6 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,12 @@

### Generalized

- in `lebesgue_integral.v`:
+ generalized from `realType` to `sigmaRingType`
* mixin `isMeasurableFun`
* structure `MeasurableFun`
* definition `mfun`

### Deprecated

### Removed
Expand Down
20 changes: 13 additions & 7 deletions theories/lebesgue_integral.v
Original file line number Diff line number Diff line change
Expand Up @@ -251,16 +251,17 @@ HB.builders Context T R f of @FiniteDecomp T R f.
HB.end.

Section mfun_pred.
Context {d} {aT : sigmaRingType d} {rT : realType}.
Context {d d'} {aT : sigmaRingType d} {rT : sigmaRingType d'}.
Definition mfun : {pred aT -> rT} := mem [set f | measurable_fun setT f].
Definition mfun_key : pred_key mfun. Proof. exact. Qed.
Canonical mfun_keyed := KeyedPred mfun_key.
End mfun_pred.

Section mfun.
Context {d} {aT : measurableType d} {rT : realType}.
Section mfun_realType.
Context {d} {aT : sigmaRingType d} {rT : realType}.
Notation T := {mfun aT >-> rT}.
Notation mfun := (@mfun _ aT rT).
Notation mfun := (@mfun _ _ aT rT).

Section Sub.
Context (f : aT -> rT) (fP : f \in mfun).
Definition mfun_Sub_subproof := @isMeasurableFun.Build d _ aT rT f (set_mem fP).
Expand Down Expand Up @@ -292,6 +293,11 @@ Definition cst_mfun x := [the {mfun aT >-> rT} of cst x].

Lemma mfun_cst x : @cst_mfun x =1 cst x. Proof. by []. Qed.

End mfun_realType.

Section mfun.
Context {d} {aT : measurableType d} {rT : realType}.

HB.instance Definition _ := @isMeasurableFun.Build _ _ _ rT
(@normr rT rT) (@measurable_normr rT setT).

Expand All @@ -310,14 +316,14 @@ End mfun.
Section ring.
Context d (aT : measurableType d) (rT : realType).

Lemma mfun_subring_closed : subring_closed (@mfun _ aT rT).
Lemma mfun_subring_closed : subring_closed (@mfun _ _ aT rT).
Proof.
split=> [|f g|f g]; rewrite !inE/=.
- exact: measurable_cst.
- exact: measurable_funB.
- exact: measurable_funM.
Qed.
HB.instance Definition _ := GRing.isSubringClosed.Build _ mfun
HB.instance Definition _ := GRing.isSubringClosed.Build _ (@mfun d default_measure_display aT rT)
mfun_subring_closed.
HB.instance Definition _ := [SubChoice_isSubComRing of {mfun aT >-> rT} by <:].

Expand Down Expand Up @@ -388,7 +394,7 @@ Notation measurable_fun_indic := measurable_indic (only parsing).

Section sfun_pred.
Context {d} {aT : sigmaRingType d} {rT : realType}.
Definition sfun : {pred _ -> _} := [predI @mfun _ aT rT & fimfun].
Definition sfun : {pred _ -> _} := [predI @mfun _ _ aT rT & fimfun].
Definition sfun_key : pred_key sfun. Proof. exact. Qed.
Canonical sfun_keyed := KeyedPred sfun_key.
Lemma sub_sfun_mfun : {subset sfun <= mfun}. Proof. by move=> x /andP[]. Qed.
Expand Down

0 comments on commit 5867064

Please sign in to comment.