Skip to content

Commit

Permalink
cleaning
Browse files Browse the repository at this point in the history
- move lemmas to more appropriate locations
- changelog
  • Loading branch information
affeldt-aist committed Oct 2, 2023
1 parent 19e7b04 commit 5e80258
Show file tree
Hide file tree
Showing 6 changed files with 252 additions and 299 deletions.
14 changes: 14 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -169,6 +169,20 @@
`measurable_closed_ball`, `lebesgue_measure_closed_ball`,
`measurable_scale_cball`

- in `classical_sets.v`:
+ lemmas `trivIsetT_bigcup`, `mem_not_I`

- in `sequences.v`:
+ lemma `nneseries_tail_cvg`

- in `normedtype.v`:
+ lemmas `open_subball`, `closed_disjoint_closed_ball`

- in `lebesgue_measure.v`:
+ lemmas `measure_sigma_sub_additive_tail`, `outer_measure_sigma_subadditive_tail`
+ definition `vitali_cover`
+ lemma `vitali_theorem`

### Changed

- `mnormalize` moved from `kernel.v` to `measure.v` and generalized
Expand Down
14 changes: 14 additions & 0 deletions classical/classical_sets.v
Original file line number Diff line number Diff line change
Expand Up @@ -1124,6 +1124,9 @@ Proof. by move=> k; apply/val_inj. Qed.
Lemma IIordK {n} : cancel (@IIord n) ordII.
Proof. by move=> k; apply/val_inj. Qed.

Lemma mem_not_I N n : (n \in ~` `I_N) = (N <= n).
Proof. by rewrite in_setC /mkset /in_mem /mem /= /in_set asboolb -leqNgt. Qed.

End InitialSegment.

Lemma setT_unit : [set: unit] = [set tt].
Expand Down Expand Up @@ -2567,6 +2570,17 @@ have [nm|nm] := eqVneq n m; first by apply: (tB m) => //; rewrite -nm.
exact: (H _ _ _ _ nm).
Qed.

Lemma trivIsetT_bigcup T1 T2 (I : eqType) (D : I -> set T1) (F : T1 -> set T2) :
trivIset setT D ->
trivIset (\bigcup_i D i) F ->
trivIset setT (fun i => \bigcup_(t in D i) F t).
Proof.
move=> D0 h i j _ _ [t [[m Dim Fmt] [n Djn Fnt]]].
have mn : m = n by apply: h => //; [exists i|exists j|exists t].
rewrite {}mn {m} in Dim Fmt *.
by apply: D0 => //; exists n.
Qed.

Definition cover T I D (F : I -> set T) := \bigcup_(i in D) F i.

Lemma coverE T I D (F : I -> set T) : cover D F = \bigcup_(i in D) F i.
Expand Down
Loading

0 comments on commit 5e80258

Please sign in to comment.