Skip to content

Commit

Permalink
able to separate the discrete stuff more cleanly
Browse files Browse the repository at this point in the history
  • Loading branch information
zstone1 committed Oct 29, 2024
1 parent 57b7b2d commit 67536af
Show file tree
Hide file tree
Showing 12 changed files with 284 additions and 236 deletions.
18 changes: 18 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,9 @@
`locally_compact_completely_regular`, and
`completely_regular_regular`.

- in file `bool_topology.v`,
+ new lemma `bool_compact`.

### Changed

- in file `normedtype.v`,
Expand All @@ -74,6 +77,16 @@
`Rhull_smallest`, `le_Rhull`, `neitv_Rhull`, `Rhull_involutive`,
`disj_itv_Rhull`

- moved from `topology_structure.v` to `discrete_topology.v`:
`discrete_open`, `discrete_set1`, `discrete_closed`, and `discrete_cvg`.

- moved from `pseudometric_structure.v` to `discrete_topology.v`:
`discrete_ent`, `discrete_ball`, and `discrete_topology`.

- in file `cantor.v`, `cantor_space` now defined in terms of `bool`.
- in file `separation_axioms.v`, updated `discrete_hausdorff`, and
`discrete_zero_dimension` to take a `discreteTopologicalType`.

### Renamed

### Generalized
Expand All @@ -82,6 +95,11 @@

### Removed

- in file `topology_structure.v`, removed `discrete_sing`, `discrete_nbhs`, and `discrete_space`.
- in file `nat_topology.v`, removed `discrete_nat`.
- in file `pseudometric_structure.v`, removed `discrete_ball_center`, `discrete_topology_type`, and
`discrete_space_discrete`.

### Infrastructure

### Misc
1 change: 1 addition & 0 deletions _CoqProject
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@ theories/topology_theory/weak_topology.v
theories/topology_theory/num_topology.v
theories/topology_theory/quotient_topology.v
theories/topology_theory/one_point_compactification.v
theories/topology_theory/discrete_topology.v

theories/separation_axioms.v
theories/function_spaces.v
Expand Down
1 change: 1 addition & 0 deletions theories/Make
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ topology_theory/weak_topology.v
topology_theory/num_topology.v
topology_theory/quotient_topology.v
topology_theory/one_point_compactification.v
topology_theory/discrete_topology.v
separation_axioms.v
function_spaces.v
cantor.v
Expand Down
54 changes: 26 additions & 28 deletions theories/cantor.v
Original file line number Diff line number Diff line change
Expand Up @@ -43,12 +43,13 @@ Import numFieldTopology.Exports.

Local Open Scope classical_set_scope.

Definition cantor_space :=
prod_topology (fun _ : nat => discrete_topology discrete_bool).
Definition cantor_space : Type :=
prod_topology (fun _ : nat => bool).

HB.instance Definition _ := Pointed.on cantor_space.
HB.instance Definition _ := Nbhs.on cantor_space.
HB.instance Definition _ := Topological.on cantor_space.
HB.instance Definition _ := Uniform.on cantor_space.

Definition cantor_like (T : topologicalType) :=
[/\ perfect_set [set: T],
Expand All @@ -58,20 +59,18 @@ Definition cantor_like (T : topologicalType) :=

Lemma cantor_space_compact : compact [set: cantor_space].
Proof.
have := @tychonoff _ (fun _ : nat => _) _ (fun=> discrete_bool_compact).
have := @tychonoff _ (fun _ : nat => _) _ (fun=> bool_compact).
by congr (compact _); rewrite eqEsubset.
Qed.

Lemma cantor_space_hausdorff : hausdorff_space cantor_space.
Proof.
apply: hausdorff_product => ?; apply: discrete_hausdorff.
exact: discrete_space_discrete.
Qed.

Lemma cantor_zero_dimensional : zero_dimensional cantor_space.
Proof.
apply: zero_dimension_prod => _; apply: discrete_zero_dimension.
exact: discrete_space_discrete.
Qed.

Lemma cantor_perfect : perfect_set [set: cantor_space].
Expand Down Expand Up @@ -102,13 +101,12 @@ Qed.
(* *)
(******************************************************************************)
Section topological_trees.
Context {K : nat -> ptopologicalType} {X : ptopologicalType}
Context {K : nat -> pdiscreteTopologicalType} {X : ptopologicalType}
(refine_apx : forall n, set X -> K n -> set X)
(tree_invariant : set X -> Prop).

Hypothesis cmptX : compact [set: X].
Hypothesis hsdfX : hausdorff_space X.
Hypothesis discreteK : forall n, discrete_space (K n).
Hypothesis refine_cover : forall n U, U = \bigcup_e @refine_apx n U e.
Hypothesis refine_invar : forall n U e,
tree_invariant U -> tree_invariant (@refine_apx n U e).
Expand All @@ -122,7 +120,7 @@ Hypothesis refine_separates: forall x y : X, x != y ->
Let refine_subset n U e : @refine_apx n U e `<=` U.
Proof. by rewrite [X in _ `<=` X](refine_cover n); exact: bigcup_sup. Qed.

Let T := prod_topology K.
Let T := prod_topology (K : nat -> ptopologicalType).

Local Fixpoint branch_apx (b : T) n :=
if n is m.+1 then refine_apx (branch_apx b m) (b m) else [set: X].
Expand Down Expand Up @@ -193,7 +191,6 @@ near=> z => i; rewrite leq_eqVlt => /predU1P[|iSn]; last by rewrite (near IH z).
move=> [->]; near: z; exists (proj n @^-1` [set b n]).
split => //; suff : @open T (proj n @^-1` [set b n]) by [].
apply: open_comp; [move=> + _; exact: proj_continuous| apply: discrete_open].
exact: discreteK.
Unshelve. all: end_near. Qed.

Let apx_prefix b c n :
Expand Down Expand Up @@ -293,9 +290,7 @@ Local Lemma cantor_map : exists f : cantor_space -> T,
set_surj [set: cantor_space] [set: T] f &
set_inj [set: cantor_space] f ].
Proof.
have [] := @tree_map_props
(fun=> discrete_topology discrete_bool) T c_ind c_invar cmptT hsdfT.
- by move=> ?; exact: discrete_space_discrete.
have [] := @tree_map_props (fun=> bool) T c_ind c_invar cmptT hsdfT.
- move=> n V; rewrite eqEsubset; split => [t Vt|t [? ? []]//].
have [?|?] := pselect (U_ n `&` V !=set0 /\ ~` U_ n `&` V !=set0).
+ have [Unt|Unt] := pselect (U_ n t).
Expand Down Expand Up @@ -350,38 +345,40 @@ Qed.

End TreeStructure.

Section cantor.
Context {R : realType}.

(**md**************************************************************************)
(* ## Part 3: Finitely branching trees are Cantor-like *)
(******************************************************************************)
Section FinitelyBranchingTrees.

Definition tree_of (T : nat -> pointedType) : Type :=
prod_topology (fun n => discrete_topology_type (T n)).
prod_topology (fun n => discrete_topology (T n)).

HB.instance Definition _ (T : nat -> pointedType) : Pointed (tree_of T):=
Pointed.on (tree_of T).

HB.instance Definition _ (T : nat -> pointedType) := Uniform.on (tree_of T).

HB.instance Definition _ {R : realType} (T : nat -> pointedType) :
HB.instance Definition _ (T : nat -> pointedType) :
@PseudoMetric R _ :=
@PseudoMetric.on (tree_of T).

Lemma cantor_like_finite_prod (T : nat -> ptopologicalType) :
(forall n, finite_set [set: discrete_topology_type (T n)]) ->
(forall n, finite_set [set: discrete_topology (T n)]) ->
(forall n, (exists xy : T n * T n, xy.1 != xy.2)) ->
cantor_like (tree_of T).
Proof.
move=> finiteT twoElems; split.
- exact/(@perfect_diagonal (discrete_topology_type \o T))/twoElems.
- exact/(@perfect_diagonal (discrete_topology \o T))/twoElems.
- have := tychonoff (fun n => finite_compact (finiteT n)).
set A := (X in compact X -> _).
suff : A = [set: tree_of (fun x : nat => T x)] by move=> ->.
by rewrite eqEsubset.
- apply: (@hausdorff_product _ (discrete_topology_type \o T)) => n.
- apply: (@hausdorff_product _ (discrete_topology \o T)) => n.
by apply: discrete_hausdorff; exact: discrete_space_discrete.
- apply: zero_dimension_prod => ?; apply: discrete_zero_dimension.
exact: discrete_space_discrete.
Qed.

End FinitelyBranchingTrees.
Expand All @@ -390,7 +387,7 @@ End FinitelyBranchingTrees.
(* ## Part 4: Building a finitely branching tree to cover `T` *)
(******************************************************************************)
Section alexandroff_hausdorff.
Context {R : realType} {T : pseudoPMetricType R}.
Context {T : pseudoPMetricType R}.

Hypothesis cptT : compact [set: T].
Hypothesis hsdfT : hausdorff_space T.
Expand Down Expand Up @@ -469,9 +466,14 @@ HB.instance Definition _ n := gen_eqMixin (K' n).
HB.instance Definition _ n := gen_choiceMixin (K' n).
HB.instance Definition _ n := isPointed.Build (K' n) (K'p n).

Let K n := K' n.
Let K n := discrete_topology (K' n).
Let Tree := @tree_of K.

HB.instance Definition _ n :=
DiscreteTopology.on (K n).
HB.instance Definition _ n :=
Pointed.on (K n).

Let embed_refine n (U : set T) (k : K n) :=
(if pselect (projT1 k `&` U !=set0)
then projT1 k
Expand All @@ -486,17 +488,12 @@ case: e => W; have [//| _ _ _ _] := projT2 (cid (ent_balls' (count_unif n))).
exact.
Qed.

Let discrete_subproof (P : choiceType) :
discrete_space (principal_filter_type P).
Proof. by []. Qed.

Local Lemma cantor_surj_pt1 : exists2 f : Tree -> T,
continuous f & set_surj [set: Tree] [set: T] f.
Proof.
pose entn n := projT2 (cid (ent_balls' (count_unif n))).
have [//| | |? []//| |? []// | |] := @tree_map_props
(discrete_topology_type \o K) T (embed_refine) (embed_invar) cptT hsdfT.
- by move=> n; exact: discrete_space_discrete.
have [ | |? []//| |? []// | |] := @tree_map_props
K T (embed_refine) (embed_invar) cptT hsdfT.
- move=> n U; rewrite eqEsubset; split=> [t Ut|t [? ? []]//].
have [//|_ _ _ + _] := entn n; rewrite -subTset.
move=> /(_ t I)[W cbW Wt]; exists (existT _ W cbW) => //.
Expand Down Expand Up @@ -535,7 +532,7 @@ Local Lemma cantor_surj_pt2 :
exists f : {surj [set: cantor_space] >-> [set: Tree]}, continuous f.
Proof.
have [|f [ctsf _]] := @homeomorphism_cantor_like R Tree; last by exists f.
apply: (@cantor_like_finite_prod (discrete_topology_type \o K)) => [n /=|n].
apply: (@cantor_like_finite_prod (discrete_topology \o K)) => [n /=|n].
have [//| fs _ _ _ _] := projT2 (cid (ent_balls' (count_unif n))).
suff -> : [set: {classic K' n}] =
(@projT1 (set T) _) @^-1` (projT1 (cid (ent_balls' (count_unif n)))).
Expand Down Expand Up @@ -569,3 +566,4 @@ by exists f; rewrite -cstf; exact: cst_continuous.
Qed.

End alexandroff_hausdorff.
End cantor.
15 changes: 8 additions & 7 deletions theories/separation_axioms.v
Original file line number Diff line number Diff line change
Expand Up @@ -111,11 +111,6 @@ have [q [Aq clsAp_q]] := !! Aco _ _ pA; rewrite (hT p q) //.
by apply: cvg_cluster clsAp_q; apply: cvg_within.
Qed.

Lemma discrete_hausdorff {dsc : discrete_space T} : hausdorff_space.
Proof.
by move=> p q /(_ _ _ (discrete_set1 p) (discrete_set1 q)) [] // x [] -> ->.
Qed.

Lemma compact_cluster_set1 (x : T) F V :
hausdorff_space -> compact V -> nbhs x V ->
ProperFilter F -> F V -> cluster F = [set x] -> F --> x.
Expand Down Expand Up @@ -211,6 +206,12 @@ move=> [[P Q]] /= [Px Qx] /= [/open_subspaceW oP /open_subspaceW oQ].
by move=> ?; exists (P, Q); split => //=; [exact: oP | exact: oQ].
Qed.

Lemma discrete_hausdorff {T : discreteTopologicalType} : hausdorff_space T.
Proof.
by move=> p q /(_ _ _ (discrete_set1 p) (discrete_set1 q)) [] // x [] -> ->.
Qed.


Lemma order_hausdorff {d} {T : orderTopologicalType d} : hausdorff_space T.
Proof.
rewrite open_hausdorff=> p q; wlog : p q / (p < q)%O.
Expand Down Expand Up @@ -567,9 +568,9 @@ Definition totally_disconnected {T} (A : set T) :=
Definition zero_dimensional T :=
(forall x y, x != y -> exists U : set T, [/\ clopen U, U x & ~ U y]).

Lemma discrete_zero_dimension {T} : discrete_space T -> zero_dimensional T.
Lemma discrete_zero_dimension {T : discreteTopologicalType} : zero_dimensional T.
Proof.
move=> dctT x y xny; exists [set x]; split => //; last exact/nesym/eqP.
move=> x y xny; exists [set x]; split => //; last exact/nesym/eqP.
by split; [exact: discrete_open | exact: discrete_closed].
Qed.

Expand Down
4 changes: 2 additions & 2 deletions theories/sequences.v
Original file line number Diff line number Diff line change
Expand Up @@ -1314,9 +1314,9 @@ Lemma cvg_nseries_near (u : nat^nat) : cvgn (nseries u) ->
\forall n \near \oo, u n = 0%N.
Proof.
move=> /cvg_ex[l ul]; have /ul[a _ aul] : nbhs l [set l].
by exists [set l]; split=> //; exists [set l] => //; rewrite bigcup_set1.
by rewrite nbhs_principalE.
have /ul[b _ bul] : nbhs l [set l.-1; l].
by exists [set l]; split => //; exists [set l] => //; rewrite bigcup_set1.
by rewrite nbhs_principalE ; apply/principal_filterP => /=; right.
exists (maxn a b) => // n /= abn.
rewrite (_ : u = fun n => nseries u n.+1 - nseries u n)%N; last first.
by rewrite funeqE => i; rewrite /nseries big_nat_recr//= addnC addnK.
Expand Down
26 changes: 7 additions & 19 deletions theories/topology_theory/bool_topology.v
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ From HB Require Import structures.
From mathcomp Require Import all_ssreflect all_algebra all_classical.
From mathcomp Require Import signed reals topology_structure uniform_structure.
From mathcomp Require Import pseudometric_structure order_topology compact.
From mathcomp Require Import discrete_topology.

(**md**************************************************************************)
(* # Topology for boolean numbers *)
Expand All @@ -15,25 +16,19 @@ Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.

HB.instance Definition _ := Nbhs_isNbhsTopological.Build bool
principal_filter_proper discrete_sing discrete_nbhs.

Lemma discrete_bool : discrete_space bool.
Proof. by []. Qed.
HB.instance Definition _ := hasNbhs.Build bool principal_filter.
HB.instance Definition _ := Discrete_ofNbhs.Build bool erefl.
HB.instance Definition _ := DiscreteUniform_ofNbhs.Build bool.

Lemma bool_compact : compact [set: bool].
Proof. by rewrite setT_bool; apply/compactU; exact: compact_set1. Qed.

Section bool_ord_topology.
Local Open Scope classical_set_scope.
Local Open Scope order_scope.

Local Lemma bool_nbhs_itv (b : bool) :
nbhs b = filter_from
(fun i => itv_open_ends i /\ b \in i)
(fun i => [set` i]).
Proof.
rewrite discrete_bool eqEsubset; split=> U; first last.
rewrite nbhs_principalE eqEsubset; split=> U; first last.
by case => V [_ Vb] VU; apply/principal_filterP/VU; apply: Vb.
move/principal_filterP; case: b.
move=> Ut; exists `]false, +oo[; first split => //; first by left.
Expand All @@ -43,12 +38,5 @@ by move=> r /=; rewrite in_itv /=; case: r.
Qed.

HB.instance Definition _ := Order_isNbhs.Build _ bool bool_nbhs_itv.
End bool_ord_topology.

Lemma discrete_bool_compact : compact [set: discrete_topology discrete_bool].
Proof. by rewrite setT_bool; apply/compactU; exact: compact_set1. Qed.

Definition pseudoMetric_bool {R : realType} :=
[the pseudoMetricType R of discrete_topology discrete_bool : Type].

#[global] Hint Resolve discrete_bool : core.
HB.instance Definition _ {R : numDomainType} :=
@DiscretePseudoMetric_ofUniform.Build R bool.
Loading

0 comments on commit 67536af

Please sign in to comment.