Skip to content

Commit

Permalink
fix
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Dec 2, 2024
1 parent 2a6c4a3 commit 7c496f4
Show file tree
Hide file tree
Showing 3 changed files with 11 additions and 74 deletions.
67 changes: 3 additions & 64 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,72 +4,11 @@

### Added

- file `Rstruct_topology.v`

- package `coq-mathcomp-reals` depending on `coq-mathcomp-classical`
with files
+ `constructive_ereal.v`
+ `reals.v`
+ `real_interval.v`
+ `signed.v`
+ `itv.v`
+ `prodnormedzmodule.v`
+ `nsatz_realtype.v`
+ `all_reals.v`

- in file `separation_axioms.v`,
+ new lemmas `compact_normal_local`, and `compact_normal`.

- package `coq-mathcomp-altreals` depending on `coq-mathcomp-reals`
with files
+ `xfinmap.v`
+ `discrete.v`
+ `realseq.v`
+ `realsum.v`
+ `distr.v`

- package `coq-mathcomp-reals-stdlib` depending on `coq-mathcomp-reals`
with file
+ `Rstruct.v`

- package `coq-mathcomp-analysis-stdlib` depending on
`coq-mathcomp-analysis` and `coq-mathcomp-reals-stdlib` with files
+ `Rstruct_topology.v`
+ `showcase/uniform_bigO.v`

- in file `separation_axioms.v`,
+ new lemmas `compact_normal_local`, and `compact_normal`.

- in file `topology_theory/one_point_compactification.v`,
+ new definitions `one_point_compactification`, and `one_point_nbhs`.
+ new lemmas `one_point_compactification_compact`,
`one_point_compactification_some_nbhs`,
`one_point_compactification_some_continuous`,
`one_point_compactification_open_some`,
`one_point_compactification_weak_topology`, and
`one_point_compactification_hausdorff`.

- in file `normedtype.v`,
+ new definition `type` (in module `completely_regular_uniformity`)
+ new lemmas `normal_completely_regular`,
`one_point_compactification_completely_reg`,
`nbhs_one_point_compactification_weakE`,
`locally_compact_completely_regular`, and
`completely_regular_regular`.

- in file `mathcomp_extra.v`,
+ new definition `sigT_fun`.
- in file `sigT_topology.v`,
+ new definition `sigT_nbhs`.
+ new lemmas `sigT_nbhsE`, `existT_continuous`, `existT_open_map`,
`existT_nbhs`, `sigT_openP`, `sigT_continuous`, `sigT_setUE`, and
`sigT_compact`.
- in file `separation_axioms.v`,
+ new lemma `sigT_hausdorff`.
- in `num_topology.v`:
+ lemma `in_continuous_mksetP`

- in `normedtype.v`:
+ lemma `in_continuous_mksetP`
+ lemmas `continuous_within_itvcyP`, `continuous_within_itvycP`
+ lemmas `continuous_within_itvcyP`, `continuous_within_itvNycP`

### Changed

Expand Down
11 changes: 1 addition & 10 deletions theories/normedtype.v
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,6 @@ From mathcomp Require Import cardinality set_interval ereal reals.
From mathcomp Require Import signed topology prodnormedzmodule function_spaces.
From mathcomp Require Export real_interval separation_axioms tvs.


(**md**************************************************************************)
(* # Norm-related Notions *)
(* *)
Expand Down Expand Up @@ -2158,14 +2157,6 @@ by apply: xe_A => //; rewrite eq_sym.
Qed.
Arguments cvg_at_leftE {R V} f x.

(* TODO: move earlier *)
Lemma in_continuous_mksetP {T : realFieldType} {U : realFieldType}
(i : interval T) (f : T -> U) :
{in i, continuous f} <-> {in [set` i], continuous f}.
Proof.
by split => [fi x /set_mem/=|fi x xi]; [exact: fi|apply: fi; rewrite inE].
Qed.

Section continuous_within_itvP.
Context {R : realType}.
Implicit Type f : R -> R.
Expand Down Expand Up @@ -2259,7 +2250,7 @@ rewrite bnd_simp/= le_eqVlt => /predU1P[<-{x}|ax] _.
by move=> ?/=; rewrite !in_itv/= !andbT; exact: ltW.
Qed.

Lemma continuous_within_itvycP b (f : R -> R) :
Lemma continuous_within_itvNycP b (f : R -> R) :
{within `]-oo, b], continuous f} <->
{in `]-oo, b[, continuous f} /\ f x @[x --> b^'-] --> f b.
Proof.
Expand Down
7 changes: 7 additions & 0 deletions theories/topology_theory/num_topology.v
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,13 @@ End numFieldTopology.

Import numFieldTopology.Exports.

Lemma in_continuous_mksetP {T : realFieldType} {U : realFieldType}
(i : interval T) (f : T -> U) :
{in i, continuous f} <-> {in [set` i], continuous f}.
Proof.
by split => [fi x /set_mem/=|fi x xi]; [exact: fi|apply: fi; rewrite inE].
Qed.

Lemma nbhs0_ltW (R : realFieldType) (x : R) : (0 < x)%R ->
\forall r \near nbhs (0%R:R), (r <= x)%R.
Proof.
Expand Down

0 comments on commit 7c496f4

Please sign in to comment.