Skip to content

Commit

Permalink
isolate the theory of lime_sup
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Dec 21, 2023
1 parent 75c6d89 commit 7d503c9
Show file tree
Hide file tree
Showing 5 changed files with 503 additions and 1 deletion.
28 changes: 28 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,34 @@
`lower_semicontinuous_HL_maximal`, `measurable_HL_maximal`,
`maximal_inequality`

- in `constructive_ereal.v`
+ lemma `lee_subgt0Pr`

- in `topology.v`:
+ lemma `nbhs_dnbhs_neq`

- in `normedtype.v`:
+ lemma `not_near_at_rightP`

- in `realfun.v`:
+ lemma `cvg_at_right_left_dnbhs`
+ lemma `cvg_at_rightP`
+ lemma `cvg_at_leftP`
+ lemma `cvge_at_rightP`
+ lemma `lime_sup`
+ lemma `lime_inf`
+ lemma `lime_supE`
+ lemma `lime_infE`
+ lemma `lime_infN`
+ lemma `lime_supN`
+ lemma `lime_sup_ge0`
+ lemma `lime_inf_ge0`
+ lemma `lime_supD`
+ lemma `lime_sup_le`
+ lemma `lime_inf_sup`
+ lemma `lim_lime_inf`
+ lemma `lim_lime_sup`

### Changed

- in `normedtype.v`:
Expand Down
8 changes: 8 additions & 0 deletions theories/constructive_ereal.v
Original file line number Diff line number Diff line change
Expand Up @@ -3035,6 +3035,14 @@ apply/(iffP idP) => [|].
by rewrite lee_fin; apply/ler_addgt0Pr => e e0; rewrite -lee_fin EFinD xy.
Qed.

Lemma lee_subgt0Pr x y :
reflect (forall e, (0 < e)%R -> x - e%:E <= y) (x <= y).
Proof.
apply/(iffP idP) => [xy e|xy].
by rewrite lee_subl_addr//; move: e; exact/lee_addgt0Pr.
by apply/lee_addgt0Pr => e e0; rewrite -lee_subl_addr// xy.
Qed.

Lemma lee_mul01Pr x y : 0 <= x ->
reflect (forall r, (0 < r < 1)%R -> r%:E * x <= y) (x <= y).
Proof.
Expand Down
10 changes: 10 additions & 0 deletions theories/normedtype.v
Original file line number Diff line number Diff line change
Expand Up @@ -2077,6 +2077,16 @@ Lemma nbhs_left_ge x z : z < x -> \forall y \near x^'-, z <= y.
Proof. by move=> xz; near do apply/ltW; apply: nbhs_left_gt.
Unshelve. all: by end_near. Qed.

Lemma not_near_at_rightP T (f : R -> T) (p : R) (P : pred T) :
~ (\forall x \near p^'+, P (f x)) ->
forall e : {posnum R}, exists2 x, p < x < p + e%:num & ~ P (f x).
Proof.
move=> pPf e; apply: contrapT => /forallPNP pePf; apply: pPf; near=> t.
apply: contrapT; apply: pePf; apply/andP; split.
- by near: t; exact: nbhs_right_gt.
- by near: t; apply: nbhs_right_lt; rewrite ltr_addl.
Unshelve. all: by end_near. Qed.

End at_left_right.
#[global] Typeclasses Opaque at_left at_right.
Notation "x ^'-" := (at_left x) : classical_set_scope.
Expand Down
Loading

0 comments on commit 7d503c9

Please sign in to comment.