Skip to content

Commit

Permalink
fix
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Nov 14, 2023
1 parent 87c029e commit 85f0990
Show file tree
Hide file tree
Showing 2 changed files with 13 additions and 64 deletions.
49 changes: 0 additions & 49 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,55 +4,6 @@

### Added

- in `kernel.v`:
+ `kseries` is now an instance of `Kernel_isSFinite_subdef`
- in `classical_sets.v`:
+ lemma `setU_id2r`
- in `lebesgue_measure.v`:
+ lemma `compact_measurable`

- in `measure.v`:
+ lemmas `outer_measure_subadditive`, `outer_measureU2`

- in `lebesgue_measure.v`:
+ declare `lebesgue_measure` as a `SigmaFinite` instance
+ lemma `lebesgue_regularity_inner_sup`
- in `convex.v`:
+ lemmas `conv_gt0`, `convRE`

- in `exp.v`:
+ lemmas `concave_ln`, `conjugate_powR`

- in file `lebesgue_integral.v`,
+ new lemmas `integral_le_bound`, `continuous_compact_integrable`, and
`lebesgue_differentiation_continuous`.

- in `normedtype.v`:
+ lemmas `open_itvoo_subset`, `open_itvcc_subset`

- in `lebesgue_measure.v`:
+ lemma `measurable_ball`

- in file `normedtype.v`,
+ new lemmas `normal_openP`, `uniform_regular`,
`regular_openP`, and `pseudometric_normal`.
- in file `topology.v`,
+ new definition `regular_space`.
+ new lemma `ent_closure`.

- in file `lebesgue_integral.v`,
+ new lemmas `simple_bounded`, `measurable_bounded_integrable`,
`compact_finite_measure`, `approximation_continuous_integrable`

- in `sequences.v`:
+ lemma `cvge_harmonic`

- in `mathcomp_extra.v`:
+ lemmas `le_bigmax_seq`, `bigmax_sup_seq`

- in `constructive_ereal.v`:
+ lemma `bigmaxe_fin_num`

- in file `cantor.v`,
+ new definitions `cantor_space`, `cantor_like`, `pointedDiscrete`, and
`tree_of`.
Expand Down
28 changes: 13 additions & 15 deletions theories/cantor.v
Original file line number Diff line number Diff line change
Expand Up @@ -10,12 +10,12 @@ From HB Require Import structures.
(* *)
(* This file develops the theory of the Cantor space, that is bool^nat with *)
(* the product topology. The two main theorems proved here are *)
(* homeomorphism_cantor_like, and cantor_surj, aka Alexandroff-Hausdorff. *)
(* homeomorphism_cantor_like, and cantor_surj, a.k.a. Alexandroff-Hausdorff. *)
(* *)
(* cantor_space == the Cantor space, with its canonical metric *)
(* cantor_space == the Cantor space, with its canonical metric *)
(* cantor_like T == perfect + compact + hausdroff + zero dimensional *)
(* pointed_discrete T == equips T with the discrete topology *)
(* tree_of T == builds a topological tree with levels (T n) *)
(* pointed_discrete T == equips T with the discrete topology *)
(* tree_of T == builds a topological tree with levels (T n) *)
(* *)
(******************************************************************************)

Expand Down Expand Up @@ -285,8 +285,7 @@ Let c_ind n (V : set T) (b : bool) :=
Local Lemma cantor_map : exists f : cantor_space -> T,
[/\ continuous f,
set_surj [set: cantor_space] [set: T] f &
set_inj [set: cantor_space] f
].
set_inj [set: cantor_space] f ].
Proof.
have [] := @tree_map_props
(fun=> [topologicalType of bool]) T c_ind c_invar cmptT hsdfT.
Expand Down Expand Up @@ -335,7 +334,7 @@ Lemma homeomorphism_cantor_like :
continuous f /\
(forall A, closed A -> closed (f @` A)).
Proof.
exists tree_map => /=.
exists [the {splitbij _ >-> _} of tree_map] => /=.
have [cts surj inje] := projT2 (cid cantor_map); split; first exact: cts.
move=> A clA; apply: (compact_closed hsdfT).
apply: (@continuous_compact _ _ tree_map); first exact: continuous_subspaceT.
Expand Down Expand Up @@ -390,14 +389,13 @@ Context (t0 t1 : T).
Hypothesis T2e : t0 != t1.

Local Lemma ent_balls' (E : set (T * T)) :
exists M : set (set T),
entourage E -> [/\
finite_set M,
forall A, M A -> exists a, A a /\
A `<=` closure [set y | split_ent E (a, y)],
exists A B : set T, M A /\ M B /\ A != B,
\bigcup_(A in M) A = [set: T] &
M `<=` closed].
exists M : set (set T), entourage E -> [/\
finite_set M,
forall A, M A -> exists a, A a /\
A `<=` closure [set y | split_ent E (a, y)],
exists A B : set T, M A /\ M B /\ A != B,
\bigcup_(A in M) A = [set: T] &
M `<=` closed].
Proof.
have [entE|?] := pselect (entourage E); last by exists point.
move: cptT; rewrite compact_cover.
Expand Down

0 comments on commit 85f0990

Please sign in to comment.