Skip to content

Commit

Permalink
start of chernoff proof
Browse files Browse the repository at this point in the history
  • Loading branch information
hoheinzollern committed Oct 8, 2023
1 parent 9fbd7cd commit af13158
Showing 1 changed file with 17 additions and 0 deletions.
17 changes: 17 additions & 0 deletions theories/probability.v
Original file line number Diff line number Diff line change
Expand Up @@ -524,6 +524,23 @@ apply: (le_trans (@le_integral_comp_abse d T R P setT measurableT (EFin \o X)
- by rewrite unlock.
Qed.

Definition moment (X : {RV P >-> R}) (t : R) := 'E_P[expR \o t \o* X].

Lemma chernoff (X : {RV P >-> R}) (t a : R) : (0 < t)%R ->
P [set x | X x >= a]%R <= moment X t.
Proof.
move=> t0.
under eq_set => x.
rewrite -ler_expR -(@ler_pmul2r _ t)// -lee_fin.
rewrite -(@gee0_abs _ (_%:E)) -[leRHS](@gee0_abs _ (_%:E));
rewrite ?(@lee_fin _ 0) ?mulr_ge0 ?expR_ge0 ?(ltW t0)//.
over.
rewrite /= /moment.
have h : (0 < `| expR a * t |)%R by rewrite normr_gt0 mulf_neq0// ?gt_eqF// ?expR_gt0//.
pose Y := [the {mfun _ >-> _} of expR \o t \o* X].
have := @markov id (`| expR a * t|)%R h.
Admitted.

Lemma chebyshev (X : {RV P >-> R}) (eps : R) : (0 < eps)%R ->
P [set x | (eps <= `| X x - fine ('E_P[X])|)%R ] <= (eps ^- 2)%:E * 'V_P[X].
Proof.
Expand Down

0 comments on commit af13158

Please sign in to comment.