Skip to content

Commit

Permalink
Convexity of powR (#1011)
Browse files Browse the repository at this point in the history
* Convexity of power function

- definition of convex_function
- lnorm and equivalence lemma
- hoelder for sums
- convexity of powR

Co-authored-by: Alessandro Bruni <[email protected]>
Co-authored-by: Reynald Affeldt <[email protected]>
  • Loading branch information
3 people committed Oct 11, 2023
1 parent 10c666f commit bbeed4c
Show file tree
Hide file tree
Showing 6 changed files with 184 additions and 3 deletions.
14 changes: 14 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -69,10 +69,24 @@

- in `measure.v`:
+ definition `ess_sup`, lemma `ess_sup_ge0`
- in `convex.v`:
+ definition `convex_function`

- in `exp.v`:
+ lemmas `ln_le0`, `ger_powR`, `ler1_powR`, `le1r_powR`, `ger1_powR`,
`ge1r_powR`, `ge1r_powRZ`, `le1r_powRZ`

- in `hoelder.v`:
+ lemmas `Lnorm_counting`, `hoelder2`, `convex_powR`

- in `lebesgue_integral.v`:
+ lemma `ge0_integral_count`

- in `exp.v`:
+ lemma `gt0_ltr_powR`
+ lemma `powR_injective`
- in `mathcomp_extra.v`:
+ lemma `gerBl`

### Changed

Expand Down
4 changes: 4 additions & 0 deletions classical/mathcomp_extra.v
Original file line number Diff line number Diff line change
Expand Up @@ -891,3 +891,7 @@ Proof. by move=> i0r Pi0 ?; apply: le_trans (le_bigmax_seq _ _ _). Qed.

End bigmax_seq.
Arguments le_bigmax_seq {d T} x {I r} i0 P.

(* NB: PR 1079 to MathComp in progress *)
Lemma gerBl {R : numDomainType} (x y : R) : 0 <= y -> x - y <= x.
Proof. by move=> y0; rewrite ler_subl_addl ler_addr. Qed.
4 changes: 4 additions & 0 deletions theories/convex.v
Original file line number Diff line number Diff line change
Expand Up @@ -154,6 +154,10 @@ Proof. by []. Qed.

End conv_realDomainType.

Definition convex_function (R : realType) (D : set R) (f : R -> R^o) :=
forall (t : {i01 R}), {in D &, forall (x y : R^o), (f (x <| t |> y) <= f x <| t |> f y)%R}.
(* TODO: generalize to convTypes once we have ordered convTypes (mathcomp 2) *)

(* ref: http://www.math.wisc.edu/~nagel/convexity.pdf *)
Section twice_derivable_convex.
Context {R : realType}.
Expand Down
48 changes: 48 additions & 0 deletions theories/exp.v
Original file line number Diff line number Diff line change
Expand Up @@ -592,6 +592,12 @@ Proof.
by move=> x_gt1; rewrite -ltr_expR expR0 lnK // qualifE/= (lt_trans _ x_gt1).
Qed.

Lemma ln_le0 (x : R) : x <= 1 -> ln x <= 0.
Proof.
have [x0|x0 x1] := leP x 0; first by rewrite ln0.
by rewrite -ler_expR expR0 lnK.
Qed.

Lemma continuous_ln x : 0 < x -> {for x, continuous ln}.
Proof.
move=> x_gt0; rewrite -[x]lnK//.
Expand Down Expand Up @@ -664,6 +670,12 @@ Qed.
Lemma powR_eq0_eq0 x p : x `^ p = 0 -> x = 0.
Proof. by move=> /eqP; rewrite powR_eq0 => /andP[/eqP]. Qed.

Lemma ger_powR a : 0 < a <= 1 -> {homo powR a : x y /~ y <= x}.
Proof.
move=> /andP[a0 a1] x y xy.
by rewrite /powR gt_eqF// ler_expR ler_wnmul2r// ln_le0.
Qed.

Lemma ler_powR a : 1 <= a -> {homo powR a : x y / x <= y}.
Proof.
move=> a1 x y xy.
Expand All @@ -679,6 +691,28 @@ by move/expR_inj/mulfI => /(_ (negbT (gt_eqF r0))); apply: ln_inj;
rewrite posrE lt_neqAle eq_sym (xneq0,yneq0).
Qed.

Lemma ler1_powR a r : 1 <= a -> r <= 1 -> a >= a `^ r.
Proof.
by move=> a1 r1; rewrite (le_trans (ler_powR _ r1)) ?powRr1// (le_trans _ a1).
Qed.

Lemma le1r_powR a r : 1 <= a -> 1 <= r -> a <= a `^ r.
Proof.
by move=> a1 r1; rewrite (le_trans _ (ler_powR _ r1)) ?powRr1// (le_trans _ a1).
Qed.

Lemma ger1_powR a r : 0 < a <= 1 -> r <= 1 -> a <= a `^ r.
Proof.
move=> /andP[a0 _a1] r1.
by rewrite (le_trans _ (ger_powR _ r1)) ?powRr1 ?a0// ltW.
Qed.

Lemma ge1r_powR a r : 0 < a <= 1 -> 1 <= r -> a >= a `^ r.
Proof.
move=> /andP[a0 a1] r1.
by rewrite (le_trans (ger_powR _ r1)) ?powRr1 ?a0// ltW.
Qed.

Lemma ge0_ler_powR (r : R) : 0 <= r ->
{in Num.nneg &, {homo powR ^~ r : x y / x <= y >-> x <= y}}.
Proof.
Expand Down Expand Up @@ -707,6 +741,20 @@ case: (ltgtP x 0) => // x0 _; case: (ltgtP y 0) => //= y0 _; do ?
by rewrite lnM// mulrDr expRD.
Qed.

Lemma ge1r_powRZ x y r : 0 < x <= 1 -> 0 <= y -> 1 <= r ->
(x * y) `^ r <= x * (y `^ r).
Proof.
move=> /andP[x0 x1] y0 r1.
by rewrite (powRM _ (ltW _))// ler_wpmul2r ?powR_ge0// ge1r_powR// x0.
Qed.

Lemma le1r_powRZ x y r : x >= 1 -> 0 <= y -> 1 <= r ->
(x * y) `^ r >= x * (y `^ r).
Proof.
move=> x1 y0 r1.
by rewrite (powRM _ (le_trans _ x1))// ler_wpmul2r ?powR_ge0// le1r_powR// x0.
Qed.

Lemma powRrM (x y z : R) : x `^ (y * z) = (x `^ y) `^ z.
Proof.
rewrite /powR mulf_eq0; have [_|xN0] := eqVneq x 0.
Expand Down
104 changes: 102 additions & 2 deletions theories/hoelder.v
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ From mathcomp Require Import mathcomp_extra boolp classical_sets functions.
From mathcomp Require Import cardinality fsbigop .
Require Import signed reals ereal topology normedtype sequences real_interval.
Require Import esum measure lebesgue_measure lebesgue_integral numfun exp.
Require Import convex itv.

(******************************************************************************)
(* Hoelder's Inequality *)
Expand Down Expand Up @@ -71,8 +72,8 @@ Qed.
Lemma eq_Lnorm p f g : f =1 g -> 'N_p[f] = 'N_p[g].
Proof. by move=> fg; congr Lnorm; exact/funext. Qed.

Lemma Lnorm_eq0_eq0 r f : (0 < r)%R -> measurable_fun setT f -> 'N_r%:E[f] = 0 ->
ae_eq mu [set: T] (fun t => (`|f t| `^ r)%:E) (cst 0).
Lemma Lnorm_eq0_eq0 r f : (0 < r)%R -> measurable_fun setT f ->
'N_r%:E[f] = 0 -> ae_eq mu [set: T] (fun t => (`|f t| `^ r)%:E) (cst 0).
Proof.
move=> r0 mf/=; rewrite (gt_eqF r0) => /poweR_eq0_eq0 fp.
apply/ae_eq_integral_abs => //=.
Expand All @@ -89,6 +90,21 @@ Hint Extern 0 (0 <= Lnorm _ _ _) => solve [apply: Lnorm_ge0] : core.

Notation "'N[ mu ]_ p [ f ]" := (Lnorm mu p f).

Section lnorm.
(* lnorm is just Lnorm applied to counting *)
Context d {T : measurableType d} {R : realType}.

Local Notation "'N_ p [ f ]" := (Lnorm [the measure _ _ of counting] p f).

Lemma Lnorm_counting p (f : R^nat) : (0 < p)%R ->
'N_p%:E [f] = (\sum_(k <oo) (`| f k | `^ p)%:E) `^ p^-1.
Proof.
move=> p0 /=; rewrite gt_eqF// ge0_integral_count// => k.
by rewrite lee_fin powR_ge0.
Qed.

End lnorm.

Section hoelder.
Context d {T : measurableType d} {R : realType}.
Variable mu : {measure set T -> \bar R}.
Expand Down Expand Up @@ -230,3 +246,87 @@ by rewrite 2!mule1 -EFinD pq.
Qed.

End hoelder.

Section hoelder2.
Context {R : realType}.
Local Open Scope ring_scope.

Lemma hoelder2 (a1 a2 b1 b2 : R) (p q : R) :
0 <= a1 -> 0 <= a2 -> 0 <= b1 -> 0 <= b2 ->
0 < p -> 0 < q -> p^-1 + q^-1 = 1 ->
a1 * b1 + a2 * b2 <= (a1 `^ p + a2 `^ p) `^ p^-1 *
(b1 `^ q + b2 `^ q) `^ q^-1.
Proof.
move=> a10 a20 b10 b20 p0 q0 pq.
pose f a b n : R := match n with 0%nat => a | 1%nat => b | _ => 0 end.
have mf a b : measurable_fun setT (f a b) by [].
have := hoelder [the measure _ _ of counting] (mf a1 a2) (mf b1 b2) p0 q0 pq.
rewrite !Lnorm_counting//.
rewrite (nneseries_split 2); last by move=> k; rewrite lee_fin powR_ge0.
rewrite ereal_series_cond eseries0 ?adde0; last first.
by move=> [//|] [//|n _]; rewrite /f /= mulr0 normr0 powR0.
rewrite 2!big_ord_recr /= big_ord0 add0e powRr1 ?normr_ge0 ?powRr1 ?normr_ge0//.
rewrite (nneseries_split 2); last by move=> k; rewrite lee_fin powR_ge0.
rewrite ereal_series_cond eseries0 ?adde0; last first.
by move=> [//|] [//|n _]; rewrite /f /= normr0 powR0// gt_eqF.
rewrite 2!big_ord_recr /= big_ord0 add0e -EFinD poweR_EFin.
rewrite (nneseries_split 2); last by move=> k; rewrite lee_fin powR_ge0.
rewrite ereal_series_cond eseries0 ?adde0; last first.
by move=> [//|] [//|n _]; rewrite /f /= normr0 powR0// gt_eqF.
rewrite 2!big_ord_recr /= big_ord0 add0e -EFinD poweR_EFin.
rewrite -EFinM invr1 powRr1; last by rewrite addr_ge0.
do 2 (rewrite ger0_norm; last by rewrite mulr_ge0).
by do 4 (rewrite ger0_norm; last by []).
Qed.

End hoelder2.

Section convex_powR.
Context {R : realType}.
Local Open Scope ring_scope.

Lemma convex_powR p : 1 <= p ->
convex_function `[0, +oo[%classic (@powR R ^~ p).
Proof.
move=> p1 t x y /[!inE] /= /[!in_itv] /= /[!andbT] x_ge0 y_ge0.
have p0 : 0 < p by rewrite (lt_le_trans _ p1).
rewrite !convRE; set w1 := `1-(t%:inum); set w2 := t%:inum.
have [->|w10] := eqVneq w1 0.
rewrite !mul0r !add0r; have [->|w20] := eqVneq w2 0.
by rewrite !mul0r powR0// gt_eqF.
by rewrite ge1r_powRZ// /w2 lt_neqAle eq_sym w20/=; apply/andP.
have [->|w20] := eqVneq w2 0.
rewrite !mul0r !addr0 ge1r_powRZ// onem_le1// andbT.
by rewrite lt_neqAle eq_sym onem_ge0// andbT.
have [->|p_neq1] := eqVneq p 1.
by rewrite !powRr1// addr_ge0// mulr_ge0// /w2 ?onem_ge0.
have {p_neq1} {}p1 : 1 < p by rewrite lt_neqAle eq_sym p_neq1.
pose q := p / (p - 1).
have q1 : 1 <= q by rewrite /q ler_pdivl_mulr// ?mul1r ?gerBl// subr_gt0.
have q0 : 0 < q by rewrite (lt_le_trans _ q1).
have pq1 : p^-1 + q^-1 = 1.
rewrite /q invf_div -{1}(div1r p) -mulrDl addrCA subrr addr0.
by rewrite mulfV// gt_eqF.
rewrite -(@powRr1 _ (w1 * x `^ p + w2 * y `^ p)); last first.
by rewrite addr_ge0// mulr_ge0// ?powR_ge0// /w2 ?onem_ge0// itv_ge0.
have -> : 1 = p^-1 * p by rewrite mulVf ?gt_eqF.
rewrite powRrM (ge0_ler_powR (le_trans _ (ltW p1)))//.
- by rewrite nnegrE addr_ge0// mulr_ge0 /w2 ?onem_ge0.
- by rewrite nnegrE powR_ge0.
have -> : w1 * x + w2 * y = w1 `^ (p^-1) * w1 `^ (q^-1) * x +
w2 `^ (p^-1) * w2 `^ (q^-1) * y.
rewrite -!powRD pq1; [|exact/implyP..].
by rewrite !powRr1// /w2 ?onem_ge0.
apply: (@le_trans _ _ ((w1 * x `^ p + w2 * y `^ p) `^ (p^-1) *
(w1 + w2) `^ q^-1)).
pose a1 := w1 `^ p^-1 * x. pose a2 := w2 `^ p^-1 * y.
pose b1 := w1 `^ q^-1. pose b2 := w2 `^ q^-1.
have : a1 * b1 + a2 * b2 <= (a1 `^ p + a2 `^ p) `^ p^-1 *
(b1 `^ q + b2 `^ q) `^ q^-1.
by apply: hoelder2 => //; rewrite ?mulr_ge0 ?powR_ge0.
rewrite ?powRM ?powR_ge0 -?powRrM ?mulVf ?powRr1 ?gt_eqF ?onem_ge0/w2//.
by rewrite mulrAC (mulrAC _ y) => /le_trans; exact.
by rewrite {2}/w1 {2}/w2 subrK powR1 mulr1.
Qed.

End convex_powR.
13 changes: 12 additions & 1 deletion theories/lebesgue_integral.v
Original file line number Diff line number Diff line change
Expand Up @@ -4041,11 +4041,22 @@ transitivity (\int[mseries (fun n => [the measure _ _ of \d_ n]) O]_t a t).
rewrite (@integral_measure_series _ _ R (fun n => [the measure _ _ of \d_ n]) setT)//=.
- by apply: eq_eseriesr=> i _; rewrite integral_dirac//= indicE mem_set// mul1e.
- move=> n; apply/integrableP; split=> [//|].
by rewrite integral_dirac//= indicE mem_set// mul1e; exact: (summable_pinfty sa).
by rewrite integral_dirac//= indicE mem_set// mul1e (summable_pinfty sa).
- by apply: summable_integral_dirac => //; exact: summable_funeneg.
- by apply: summable_integral_dirac => //; exact: summable_funepos.
Qed.

Lemma ge0_integral_count (a : nat -> \bar R) : (forall k, 0 <= a k) ->
\int[counting]_t (a t) = \sum_(k <oo) (a k).
Proof.
move=> sa.
transitivity (\int[mseries (fun n => [the measure _ _ of \d_ n]) O]_t a t).
congr (integral _ _ _); apply/funext => A.
by rewrite /= counting_dirac.
rewrite (@ge0_integral_measure_series _ _ R (fun n => [the measure _ _ of \d_ n]) setT)//=.
by apply: eq_eseriesr=> i _; rewrite integral_dirac//= indicE mem_set// mul1e.
Qed.

End integral_counting.

Section subadditive_countable.
Expand Down

0 comments on commit bbeed4c

Please sign in to comment.