Skip to content

Commit

Permalink
complete thm 2.13
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Dec 3, 2024
1 parent 72dd499 commit bc59196
Show file tree
Hide file tree
Showing 6 changed files with 1,390 additions and 501 deletions.
56 changes: 0 additions & 56 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,55 +53,6 @@
### Changed


- in file `normedtype.v`,
changed `completely_regular_space` to depend on uniform separators
which removes the dependency on `R`. The old formulation can be
recovered easily with `uniform_separatorP`.

- moved from `Rstruct.v` to `Rstruct_topology.v`
+ lemmas `continuity_pt_nbhs`, `continuity_pt_cvg`,
`continuity_ptE`, `continuity_pt_cvg'`, `continuity_pt_dnbhs`
and `nbhs_pt_comp`

- moved from `real_interval.v` to `normedtype.v`
+ lemmas `set_itvK`, `RhullT`, `RhullK`, `set_itv_setT`,
`Rhull_smallest`, `le_Rhull`, `neitv_Rhull`, `Rhull_involutive`,
`disj_itv_Rhull`
- in `topology.v`:
+ lemmas `subspace_pm_ball_center`, `subspace_pm_ball_sym`,
`subspace_pm_ball_triangle`, `subspace_pm_entourage` turned
into local `Let`'s

- in `lebesgue_integral.v`:
+ structure `SimpleFun` now inside a module `HBSimple`
+ structure `NonNegSimpleFun` now inside a module `HBNNSimple`
+ lemma `cst_nnfun_subproof` has now a different statement
+ lemma `indic_nnfun_subproof` has now a different statement
- in `mathcomp_extra.v`:
+ definition `idempotent_fun`

- in `topology_structure.v`:
+ definitions `regopen`, `regclosed`
+ lemmas `closure_setC`, `interiorC`, `closureU`, `interiorU`,
`closureEbigcap`, `interiorEbigcup`,
`closure_open_regclosed`, `interior_closed_regopen`,
`closure_interior_idem`, `interior_closure_idem`

- in file `topology_structure.v`,
+ mixin `isContinuous`, type `continuousType`, structure `Continuous`
+ new lemma `continuousEP`.
+ new definition `mkcts`.

- in file `subspace_topology.v`,
+ new lemmas `continuous_subspace_setT`, `nbhs_prodX_subspace_inE`, and
`continuous_subspace_prodP`.
+ type `continuousFunType`, HB structure `ContinuousFun`

- in file `subtype_topology.v`,
+ new lemmas `subspace_subtypeP`, `subspace_sigL_continuousP`,
`subspace_valL_continuousP'`, `subspace_valL_continuousP`, `sigT_of_setXK`,
`setX_of_sigTK`, `setX_of_sigT_continuous`, and `sigT_of_setX_continuous`.

- in `lebesgue_integrale.v`
+ change implicits of `measurable_funP`

Expand Down Expand Up @@ -129,13 +80,6 @@

### Removed

- in `lebesgue_integral.v`:
+ definition `cst_mfun`
+ lemma `mfun_cst`

- in `cardinality.v`:
+ lemma `cst_fimfun_subproof`

- in `lebesgue_integral.v`:
+ lemma `cst_mfun_subproof` (use lemma `measurable_cst` instead)
+ lemma `cst_nnfun_subproof` (turned into a `Let`)
Expand Down
1 change: 1 addition & 0 deletions _CoqProject
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,7 @@ theories/lebesgue_integral.v
theories/ftc.v
theories/hoelder.v
theories/probability.v
theories/independence.v
theories/convex.v
theories/charge.v
theories/kernel.v
Expand Down
35 changes: 35 additions & 0 deletions classical/mathcomp_extra.v
Original file line number Diff line number Diff line change
Expand Up @@ -538,3 +538,38 @@ Qed.
Definition sigT_fun {I : Type} {X : I -> Type} {T : Type}
(f : forall i, X i -> T) (x : {i & X i}) : T :=
(f (projT1 x) (projT2 x)).

(* PR 114 to finmap in progress *)
Section FsetPartitions.
Variables T I : choiceType.
Implicit Types (x y z : T) (A B D X : {fset T}) (P Q : {fset {fset T}}).
Implicit Types (J : pred I) (F : I -> {fset T}).

Variables (R : Type) (idx : R) (op : Monoid.com_law idx).
Let rhs_cond P K E :=
(\big[op/idx]_(A <- P) \big[op/idx]_(x <- A | K x) E x)%fset.
Let rhs P E := (\big[op/idx]_(A <- P) \big[op/idx]_(x <- A) E x)%fset.

Lemma partition_disjoint_bigfcup (f : T -> R) (F : I -> {fset T})
(K : {fset I}) :
(forall i j, i \in K -> j \in K -> i != j -> [disjoint F i & F j])%fset ->
\big[op/idx]_(i <- \big[fsetU/fset0]_(x <- K) (F x)) f i =
\big[op/idx]_(k <- K) (\big[op/idx]_(i <- F k) f i).
Proof.
move=> disjF; pose P := [fset F i | i in K & F i != fset0]%fset.
have trivP : trivIfset P.
apply/trivIfsetP => _ _ /imfsetP[i iK ->] /imfsetP[j jK ->] neqFij.
move: iK; rewrite !inE/= => /andP[iK Fi0].
move: jK; rewrite !inE/= => /andP[jK Fj0].
by apply: (disjF _ _ iK jK); apply: contraNneq neqFij => ->.
have -> : (\bigcup_(i <- K) F i)%fset = fcover P.
apply/esym; rewrite /P fcover_imfset big_mkcond /=; apply eq_bigr => i _.
by case: ifPn => // /negPn/eqP.
rewrite big_trivIfset // /rhs big_imfset => [|i j iK /andP[jK notFj0] eqFij] /=.
rewrite big_filter big_mkcond; apply eq_bigr => i _.
by case: ifPn => // /negPn /eqP ->; rewrite big_seq_fset0.
move: iK; rewrite !inE/= => /andP[iK Fi0].
by apply: contraNeq (disjF _ _ iK jK) _; rewrite -fsetI_eq0 eqFij fsetIid.
Qed.

End FsetPartitions.
1 change: 1 addition & 0 deletions theories/Make
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@ lebesgue_integral.v
ftc.v
hoelder.v
probability.v
independence.v
lebesgue_stieltjes_measure.v
convex.v
charge.v
Expand Down
Loading

0 comments on commit bc59196

Please sign in to comment.