Skip to content

Commit

Permalink
use notation || _ ||_ _
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Aug 11, 2023
1 parent 16cf3ff commit bf0db5b
Show file tree
Hide file tree
Showing 2 changed files with 25 additions and 25 deletions.
2 changes: 1 addition & 1 deletion CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@
+ lemma `eqe_pdivr_mull`

- in `lebesgue_integral.v`:
+ definition `Lnorm`, notations `'N[mu]_p[f]`, `` `| f |_p ``
+ definition `Lnorm`, notations `'N[mu]_p[f]`, `` `|| f ||_p ``
+ lemmas `Lnorm1`, `Lnorm_ge0`, `eq_Lnorm`, `Lnorm_eq0_eq0`
+ lemma `hoelder`

Expand Down
48 changes: 24 additions & 24 deletions theories/lebesgue_integral.v
Original file line number Diff line number Diff line change
Expand Up @@ -5360,8 +5360,8 @@ Reserved Notation "'N[ mu ]_ p [ F ]"
(at level 5, F at level 36, mu at level 10,
format "'[' ''N[' mu ]_ p '/ ' [ F ] ']'").
(* for use as a local notation when the measure is in context: *)
Reserved Notation "`| F |~ p"
(at level 0, F at level 99, format "'[' `| F |~ p ']'").
Reserved Notation "`|| F ||_ p"
(at level 0, F at level 99, format "'[' `|| F ||_ p ']'").

Declare Scope Lnorm_scope.

Expand All @@ -5373,21 +5373,21 @@ Implicit Types (p : R) (f g : T -> R).

Definition Lnorm p f := (\int[mu]_x (`|f x| `^ p)%:E) `^ p^-1.

Local Notation "`| f |~ p" := (Lnorm p f).
Local Notation "`|| f ||_ p" := (Lnorm p f).

Lemma Lnorm1 f : `| f |~1 = \int[mu]_x `|f x|%:E.
Lemma Lnorm1 f : `|| f ||_1 = \int[mu]_x `|f x|%:E.
Proof.
rewrite /Lnorm invr1// poweRe1//.
by apply: eq_integral => t _; rewrite powRr1.
by apply: integral_ge0 => t _; rewrite powRr1.
Qed.

Lemma Lnorm_ge0 p f : 0 <= `| f |~p. Proof. exact: poweR_ge0. Qed.
Lemma Lnorm_ge0 p f : 0 <= `|| f ||_p. Proof. exact: poweR_ge0. Qed.

Lemma eq_Lnorm p f g : f =1 g -> `|f|~p = `|g|~p.
Lemma eq_Lnorm p f g : f =1 g -> `|| f ||_p = `|| g ||_p.
Proof. by move=> fg; congr Lnorm; exact/funext. Qed.

Lemma Lnorm_eq0_eq0 p f : measurable_fun setT f -> `| f |~p = 0 ->
Lemma Lnorm_eq0_eq0 p f : measurable_fun setT f -> `|| f ||_p = 0 ->
ae_eq mu [set: T] (fun t => (`|f t| `^ p)%:E) (cst 0).
Proof.
move=> mf /poweR_eq0_eq0 fp; apply/ae_eq_integral_abs => //=.
Expand All @@ -5414,10 +5414,10 @@ Let measurableT_comp_powR f p :
measurable_fun [set: T] f -> measurable_fun setT (fun x => f x `^ p)%R.
Proof. exact: (@measurableT_comp _ _ _ _ _ _ (@powR R ^~ p)). Qed.

Local Notation "`| f |~ p" := (Lnorm mu p f).
Local Notation "`|| f ||_ p" := (Lnorm mu p f).

Let integrable_powR f p : (0 < p)%R ->
measurable_fun [set: T] f -> `| f |~p != +oo ->
measurable_fun [set: T] f -> `|| f ||_p != +oo ->
mu.-integrable [set: T] (fun x => (`|f x| `^ p)%:E).
Proof.
move=> p0 mf foo; apply/integrableP; split.
Expand All @@ -5431,7 +5431,7 @@ Qed.

Let hoelder0 f g p q : measurable_fun setT f -> measurable_fun setT g ->
(0 < p)%R -> (0 < q)%R -> (p^-1 + q^-1 = 1)%R ->
`| f |~ p = 0 -> `| (f \* g)%R |~1 <= `| f |~p * `| g |~q.
`|| f ||_ p = 0 -> `|| (f \* g)%R ||_1 <= `|| f ||_p * `|| g ||_q.
Proof.
move=> mf mg p0 q0 pq f0; rewrite f0 mul0e Lnorm1 [leLHS](_ : _ = 0)//.
rewrite (ae_eq_integral (cst 0)) => [|//||//|]; first by rewrite integral0.
Expand All @@ -5442,7 +5442,7 @@ rewrite (ae_eq_integral (cst 0)) => [|//||//|]; first by rewrite integral0.
by rewrite normrM => ->; rewrite mul0r.
Qed.

Let normalized p f x := `|f x| / fine `|f|~p.
Let normalized p f x := `|f x| / fine `|| f ||_p.

Let normalized_ge0 p f x : (0 <= normalized p f x)%R.
Proof. by rewrite /normalized divr_ge0// fine_ge0// Lnorm_ge0. Qed.
Expand All @@ -5451,12 +5451,12 @@ Let measurable_normalized p f : measurable_fun [set: T] f ->
measurable_fun [set: T] (normalized p f).
Proof. by move=> mf; apply: measurable_funM => //; exact: measurableT_comp. Qed.

Let integral_normalized f p : (0 < p)%R -> 0 < `|f|~p ->
Let integral_normalized f p : (0 < p)%R -> 0 < `|| f ||_p ->
mu.-integrable [set: T] (fun x => (`|f x| `^ p)%:E) ->
\int[mu]_x (normalized p f x `^ p)%:E = 1.
Proof.
move=> p0 fpos ifp.
transitivity (\int[mu]_x (`|f x| `^ p / fine (`|f|~p `^ p))%:E).
transitivity (\int[mu]_x (`|f x| `^ p / fine (`|| f ||_p `^ p))%:E).
apply: eq_integral => t _.
rewrite powRM//; last by rewrite invr_ge0 fine_ge0// Lnorm_ge0.
rewrite -powR_inv1; last by rewrite fine_ge0 // Lnorm_ge0.
Expand All @@ -5476,19 +5476,19 @@ Qed.

Lemma hoelder f g p q : measurable_fun setT f -> measurable_fun setT g ->
(0 < p)%R -> (0 < q)%R -> (p^-1 + q^-1 = 1)%R ->
`| (f \* g)%R |~1 <= `| f |~p * `| g |~q.
`|| (f \* g)%R ||_1 <= `|| f ||_p * `|| g ||_q.
Proof.
move=> mf mg p0 q0 pq.
have [f0|f0] := eqVneq `|f|~p 0%E; first exact: hoelder0.
have [g0|g0] := eqVneq `|g|~q 0%E.
have [f0|f0] := eqVneq `|| f ||_p 0%E; first exact: hoelder0.
have [g0|g0] := eqVneq `|| g ||_q 0%E.
rewrite muleC; apply: le_trans; last by apply: hoelder0 => //; rewrite addrC.
by under eq_Lnorm do rewrite /= mulrC.
have {f0}fpos : 0 < `|f|~p by rewrite lt_neqAle eq_sym f0//= Lnorm_ge0.
have {g0}gpos : 0 < `|g|~q by rewrite lt_neqAle eq_sym g0//= Lnorm_ge0.
have [foo|foo] := eqVneq `|f|~p +oo%E; first by rewrite foo gt0_mulye ?leey.
have [goo|goo] := eqVneq `|g|~q +oo%E; first by rewrite goo gt0_muley ?leey.
have {f0}fpos : 0 < `|| f ||_p by rewrite lt_neqAle eq_sym f0//= Lnorm_ge0.
have {g0}gpos : 0 < `|| g ||_q by rewrite lt_neqAle eq_sym g0//= Lnorm_ge0.
have [foo|foo] := eqVneq `|| f ||_p +oo%E; first by rewrite foo gt0_mulye ?leey.
have [goo|goo] := eqVneq `|| g ||_q +oo%E; first by rewrite goo gt0_muley ?leey.
pose F := normalized p f; pose G := normalized q g.
rewrite [leLHS](_ : _ = `| (F \* G)%R |~1 * `| f |~p * `| g |~q); last first.
rewrite [leLHS](_ : _ = `|| (F \* G)%R ||_1 * `|| f ||_p * `|| g ||_q); last first.
rewrite !Lnorm1.
under [in RHS]eq_integral.
move=> x _.
Expand All @@ -5501,13 +5501,13 @@ rewrite [leLHS](_ : _ = `| (F \* G)%R |~1 * `| f |~p * `| g |~q); last first.
exact: measurable_funM.
- by rewrite lee_fin mulr_ge0// invr_ge0 fine_ge0// Lnorm_ge0.
rewrite -muleA muleC muleA EFinM muleCA 2!muleA.
rewrite (_ : _ * `|f|~p = 1) ?mul1e; last first.
rewrite (_ : _ * `|| f ||_p = 1) ?mul1e; last first.
rewrite -[X in _ * X]fineK; last by rewrite ge0_fin_numE ?ltey// Lnorm_ge0.
by rewrite -EFinM mulVr ?unitfE ?gt_eqF// fine_gt0// fpos/= ltey.
rewrite (_ : `|g|~q * _ = 1) ?mul1e// muleC.
rewrite (_ : `|| g ||_q * _ = 1) ?mul1e// muleC.
rewrite -[X in _ * X]fineK; last by rewrite ge0_fin_numE ?ltey// Lnorm_ge0.
by rewrite -EFinM mulVr ?unitfE ?gt_eqF// fine_gt0// gpos/= ltey.
rewrite -(mul1e (`|f|~p * _)) -muleA lee_pmul ?mule_ge0 ?Lnorm_ge0//.
rewrite -(mul1e (`|| f ||_p * _)) -muleA lee_pmul ?mule_ge0 ?Lnorm_ge0//.
rewrite [leRHS](_ : _ = \int[mu]_x (F x `^ p / p + G x `^ q / q)%:E).
rewrite Lnorm1 ae_ge0_le_integral //.
- apply: measurableT_comp => //; apply: measurableT_comp => //.
Expand Down

0 comments on commit bf0db5b

Please sign in to comment.