Skip to content

Commit

Permalink
cumulative function with HB
Browse files Browse the repository at this point in the history
Co-authored-by: [email protected]
Co-authored-by: Takafumi Saikawa <[email protected]>
  • Loading branch information
affeldt-aist and t6s committed Nov 13, 2022
1 parent 402afef commit c6b28dc
Showing 1 changed file with 82 additions and 74 deletions.
156 changes: 82 additions & 74 deletions theories/lebesgue_stieltjes_measure.v
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ From mathcomp Require Import finmap fingroup perm rat.
Require Import boolp reals ereal classical_sets signed topology numfun.
Require Import mathcomp_extra functions normedtype.
From HB Require Import structures.
Require Import sequences esum measure fsbigop cardinality set_interval.
Require Import sequences esum measure fsbigop cardinality real_interval.
Require Import realfun.

(******************************************************************************)
Expand All @@ -29,21 +29,50 @@ Local Open Scope ring_scope.
Notation right_continuous f :=
(forall x, f%function @ at_right x --> f%function x).

Lemma nondecreasing_right_continuousP (R : realType) (a : R) (e : R)
(f : R -> R) (ndf : {homo f : x y / x <= y}) (rcf : (right_continuous f)) :
Lemma right_continuousW (R : numFieldType) (f : R -> R) :
continuous f -> right_continuous f.
Proof. by move=> cf x; apply: cvg_within_filter; exact/cf. Qed.

HB.mixin Record isCumulative (R : numFieldType) (f : R -> R) := {
cumulative_is_nondecreasing : {homo f : x y / x <= y} ;
cumulative_is_right_continuous : right_continuous f }.

#[short(type=cumulative)]
HB.structure Definition Cumulative (R : numFieldType) :=
{ f of isCumulative R f }.

Arguments cumulative_is_nondecreasing {R} _.
Arguments cumulative_is_right_continuous {R} _.

Lemma nondecreasing_right_continuousP (R : numFieldType) (a : R) (e : R)
(f : cumulative R) :
e > 0 -> exists d : {posnum R}, f (a + d%:num) <= f a + e.
Proof.
move=> e0; move: rcf => /(_ a)/(@cvg_dist _ [normedModType R of R^o]).
move=> e0; move: (cumulative_is_right_continuous f).
move=> /(_ a)/(@cvgr_dist_lt _ [normedModType R of R^o]).
move=> /(_ _ e0)[] _ /posnumP[d] => h.
exists (PosNum [gt0 of (d%:num / 2)]) => //=.
move: h => /(_ (a + d%:num / 2)) /=.
rewrite opprD addrA subrr distrC subr0 ger0_norm //.
rewrite ltr_pdivr_mulr// ltr_pmulr// ltr1n => /(_ erefl).
rewrite ltr_addl divr_gt0// => /(_ erefl).
rewrite ler0_norm; last by rewrite subr_le0 ndf// ler_addl.
rewrite ler0_norm; last first.
by rewrite subr_le0 (cumulative_is_nondecreasing f)// ler_addl.
by rewrite opprB ltr_subl_addl => fa; exact: ltW.
Qed.

Section id_is_cumulative.
Variable R : realType.

Let id_nd : {homo @idfun R : x y / x <= y}.
Proof. by []. Qed.

Let id_rc : right_continuous (@idfun R).
Proof. by apply/right_continuousW => x; exact: cvg_id. Qed.

HB.instance Definition _ := isCumulative.Build R idfun id_nd id_rc.
End id_is_cumulative.

(* TODO: move and use in lebesgue_measure.v? *)
Lemma le_inf (R : realType) (S1 S2 : set R) :
-%R @` S2 `<=` down (-%R @` S1) -> nonempty S2 -> has_inf S1
Expand All @@ -66,8 +95,6 @@ Qed.
Section hlength.
Local Open Scope ereal_scope.
Variables (R : realType) (f : R -> R).
Hypothesis ndf : {homo f : x y / (x <= y)%R}.

Let g : \bar R -> \bar R := EFinf f.

Implicit Types i j : interval R.
Expand Down Expand Up @@ -149,7 +176,7 @@ rewrite hlength_itv; case: i => -[ba a|[]] [bb b|[]] //= => [|_|_|].
- by right.
Qed.

Lemma hlength_ge0 i : 0 <= hlength [set` i].
Lemma hlength_ge0 (ndf : {homo f : x y / (x <= y)%R}) i : 0 <= hlength [set` i].
Proof.
rewrite hlength_itv; case: ifPn => //; case: (i.1 : \bar _) => [r| |].
- by rewrite suber_ge0// => /ltW /(nondecreasing_EFinf ndf).
Expand All @@ -161,7 +188,7 @@ Local Hint Extern 0 (0%:E <= hlength _) => solve[apply: hlength_ge0] : core.
Lemma hlength_Rhull (A : set R) : hlength [set` Rhull A] = hlength A.
Proof. by rewrite /hlength Rhull_involutive. Qed.

Lemma le_hlength_itv i j :
Lemma le_hlength_itv (ndf : {homo f : x y / (x <= y)%R}) i j :
{subset i <= j} -> hlength [set` i] <= hlength [set` j].
Proof.
set I := [set` i]; set J := [set` j].
Expand All @@ -183,9 +210,10 @@ move=> r [r' Ir' <-{r}]; exists (- r')%R.
by split => //; exists r' => //; apply: ij.
Qed.

Lemma le_hlength : {homo hlength : A B / A `<=` B >-> A <= B}.
Lemma le_hlength (ndf : {homo f : x y / (x <= y)%R}) :
{homo hlength : A B / A `<=` B >-> A <= B}.
Proof.
move=> a b /le_Rhull /le_hlength_itv.
move=> a b /le_Rhull /(le_hlength_itv ndf).
by rewrite (hlength_Rhull a) (hlength_Rhull b).
Qed.

Expand All @@ -208,7 +236,8 @@ Lemma ocitv0 : ocitv set0.
Proof. by exists (1, 0); rewrite //= set_itv_ge ?bnd_simp//= ltr10. Qed.
Hint Resolve ocitv0 : core.

Lemma ocitvP X : ocitv X <-> X = set0 \/ exists2 x, x.1 < x.2 & X = `]x.1, x.2]%classic.
Lemma ocitvP X :
ocitv X <-> X = set0 \/ exists2 x, x.1 < x.2 & X = `]x.1, x.2]%classic.
Proof.
split=> [[x _ <-]|[->//|[x xlt ->]]]//.
case: (boolP (x.1 < x.2)) => x12; first by right; exists x.
Expand Down Expand Up @@ -252,14 +281,13 @@ Qed.

Variable d : measure_display.

HB.instance Definition _ :=
@isSemiRingOfSets.Build d ocitv_type (Pointed.class R) ocitv ocitv0 ocitvI ocitvD.
HB.instance Definition _ := @isSemiRingOfSets.Build d ocitv_type
(Pointed.class R) ocitv ocitv0 ocitvI ocitvD.

Definition itvs_semiRingOfSets := [the semiRingOfSetsType d of ocitv_type].

Variable f : R -> R.

Lemma hlength_semi_additive : semi_additive (hlength f : set ocitv_type -> _).
Lemma hlength_semi_additive (f : R -> R) :
semi_additive (hlength f : set ocitv_type -> _).
Proof.
move=> /= I n /(_ _)/cid2-/all_sig[b]/all_and2[_]/(_ _)/esym-/funext {I}->.
move=> Itriv [[/= a1 a2] _] /esym /[dup] + ->.
Expand Down Expand Up @@ -326,7 +354,8 @@ Qed.

Hint Extern 0 (measurable _) => solve [apply: is_ocitv] : core.

Lemma hlength_sigma_finite : sigma_finite [set: ocitv_type] (hlength f).
Lemma hlength_sigma_finite (f : R -> R) :
sigma_finite [set: ocitv_type] (hlength f).
Proof.
exists (fun k : nat => `] (- k%:R)%R, k%:R]%classic).
apply/esym; rewrite -subTset => /= x _ /=.
Expand All @@ -336,26 +365,30 @@ exists (fun k : nat => `] (- k%:R)%R, k%:R]%classic).
rewrite [ltRHS]ger0_norm//.
by rewrite (le_lt_trans _ (lt_succ_Rfloor _))// ?ler_norm.
by rewrite addr_ge0// -Rfloor0 le_Rfloor.
by move=> k; split => //; rewrite hlength_itv /= -EFinB; case: ifP; rewrite ltey.
move=> k; split => //; rewrite hlength_itv /= -EFinB.
by case: ifP; rewrite ltey.
Qed.

Hypothesis ndf : {homo f : x y / (x <= y)%R}.

Lemma hlength_ge0' (I : set ocitv_type) : (0 <= hlength f I)%E.
Proof. by rewrite -(hlength0 f) le_hlength. Qed.
Lemma hlength_ge0' (f : cumulative R) (I : set ocitv_type) :
(0 <= hlength f I)%E.
Proof.
by rewrite -(hlength0 f) le_hlength//; exact: cumulative_is_nondecreasing.
Qed.

HB.instance Definition _ :=
HB.instance Definition _ (f : cumulative R) :=
isAdditiveMeasure.Build _ R _ (hlength f : set ocitv_type -> _)
hlength_ge0' hlength_semi_additive.
(hlength_ge0' f) (hlength_semi_additive f).

Lemma hlength_content_sub_fsum (D : {fset nat}) a0 b0
Lemma hlength_content_sub_fsum (f : cumulative R) (D : {fset nat}) a0 b0
(a b : nat -> R) : (forall i, i \in D -> a i <= b i) ->
`]a0, b0] `<=` \big[setU/set0]_(i <- D) `] a i, b i]%classic ->
f b0 - f a0 <= \sum_(i <- D) (f (b i) - f (a i)).
Proof.
move=> Dab h; have [ab|ab] := leP a0 b0; last first.
apply (@le_trans _ _ 0); first by rewrite subr_le0 ndf// ltW.
by rewrite big_seq sumr_ge0// => i iD; rewrite subr_ge0 ndf// Dab.
apply (@le_trans _ _ 0).
by rewrite subr_le0 cumulative_is_nondecreasing// ltW.
rewrite big_seq sumr_ge0// => i iD.
by rewrite subr_ge0 cumulative_is_nondecreasing// Dab.
have mab k :
[set` D] k -> @measurable d itvs_semiRingOfSets `]a k, b k]%classic by [].
move: h; rewrite -bigcup_fset.
Expand All @@ -368,7 +401,7 @@ rewrite -sumEFin fsbig_finite//= set_fsetK// big_seq [in X in (_ <= X)%E]big_seq
by apply: lee_sum => i iD; rewrite hlength_itv_bnd// Dab.
Qed.

Lemma hlength_sigma_sub_additive (rcf : right_continuous f) :
Lemma hlength_sigma_sub_additive (f : cumulative R) :
sigma_sub_additive (hlength f : set ocitv_type -> _).
Proof.
move=> I A /(_ _)/cid2-/all_sig[b]/all_and2[_]/(_ _)/esym AE.
Expand All @@ -381,7 +414,7 @@ wlog wlogh : b A AE lebig / forall n, (b n).1 <= (b n).2.
set A' := fun n => if (b n).1 >= (b n).2 then set0 else A n.
set b' := fun n => if (b n).1 >= (b n).2 then (0, 0) else b n.
rewrite [X in (_ <= X)%E](_ : _ = \sum_(n <oo) hlength f (A' n))%E; last first.
apply: (@eq_nneseries _ (hlength f \o A) (hlength f \o A')) => k.
apply: (@eq_eseries _ (hlength f \o A) (hlength f \o A')) => k.
rewrite /= /A' AE; case: ifPn => // bn.
by rewrite set_itv_ge//= bnd_simp -leNgt.
apply (h b').
Expand All @@ -395,15 +428,16 @@ wlog wlogh : b A AE lebig / forall n, (b n).1 <= (b n).2.
apply: lee_adde => e.
rewrite [e%:num]splitr [in leRHS]EFinD addeA -lee_subl_addr//.
apply: le_trans (epsilon_trick _ _ _) => //=.
have [c ce] := nondecreasing_right_continuousP a.1 ndf rcf [gt0 of e%:num / 2].
have [c ce] := nondecreasing_right_continuousP a.1 f [gt0 of e%:num / 2].
have [D De] : exists D : nat -> {posnum R}, forall i,
f ((b i).2 + (D i)%:num) <= f ((b i).2) + (e%:num / 2) / 2 ^ i.+1.
suff : forall i, exists di : {posnum R},
f ((b i).2 + di%:num) <= f ((b i).2) + (e%:num / 2) / 2 ^ i.+1.
by move/choice => -[g hg]; exists g.
move=> k; apply nondecreasing_right_continuousP => //.
by rewrite divr_gt0 // exprn_gt0.
have acbd : `[ a.1 + c%:num / 2, a.2] `<=` \bigcup_i `](b i).1, (b i).2 + (D i)%:num[%classic.
have acbd : `[ a.1 + c%:num / 2, a.2] `<=`
\bigcup_i `](b i).1, (b i).2 + (D i)%:num[%classic.
apply (@subset_trans _ `]a.1, a.2]).
move=> r; rewrite /= !in_itv/= => /andP [+ ->].
by rewrite andbT; apply: lt_le_trans; rewrite ltr_addl.
Expand All @@ -417,11 +451,13 @@ move=> /(_ _ _ _ obd acbd){obd acbd}.
case=> X _ acXbd.
rewrite -EFinD.
apply: (@le_trans _ _ (\sum_(i <- X) (hlength f `](b i).1, (b i).2]%classic) +
\sum_(i <- X) (f ((b i).2 + (D i)%:num)%R - f (b i).2)%:E)%E).
\sum_(i <- X) (f ((b i).2 + (D i)%:num)%R - f (b i).2)%:E)%E).
apply: (@le_trans _ _ (f a.2 - f (a.1 + c%:num / 2))%:E).
rewrite lee_fin -addrA -opprD ler_sub// (le_trans _ ce)// ndf//.
rewrite lee_fin -addrA -opprD ler_sub// (le_trans _ ce)//.
rewrite cumulative_is_nondecreasing//.
by rewrite ler_add2l ler_pdivr_mulr// ler_pmulr// ler1n.
apply: (@le_trans _ _ (\sum_(i <- X) (f ((b i).2 + (D i)%:num) - f (b i).1)%:E)%E).
apply: (@le_trans _ _
(\sum_(i <- X) (f ((b i).2 + (D i)%:num) - f (b i).1)%:E)%E).
rewrite sumEFin lee_fin hlength_content_sub_fsum//.
by move=> k kX; rewrite (@le_trans _ _ (b k).2)// ler_addl.
apply: subset_trans.
Expand All @@ -432,64 +468,36 @@ apply: (@le_trans _ _ (\sum_(i <- X) (hlength f `](b i).1, (b i).2]%classic) +
by rewrite !(EFinB, hlength_itv_bnd)// addeA subeK.
rewrite -big_split/= nneseries_esum//; last first.
by move=> k _; rewrite adde_ge0// hlength_ge0'.
rewrite esum_ge//; exists X => //.
rewrite esum_ge//; exists [set` X] => //; rewrite fsbig_finite//= set_fsetK.
rewrite big_seq [in X in (_ <= X)%E]big_seq; apply: lee_sum => k kX.
by rewrite AE lee_add2l// lee_fin ler_subl_addl natrX De.
Qed.

Let gitvs := [the measurableType _ of salgebraType ocitv].

Definition lebesgue_stieltjes_measure :=
Definition lebesgue_stieltjes_measure (f : cumulative R) :=
Hahn_ext [the additive_measure _ _ of hlength f : set ocitv_type -> _ ].

End itv_semiRingOfSets.
Arguments lebesgue_stieltjes_measure {R}.

Section lebesgue_stieltjes_measure_itv.
Variables (d : measure_display) (R : realType) (f : R -> R).
Hypotheses (ndf : {homo f : x y / x <= y}) (rcf : right_continuous f).
Variables (d : measure_display) (R : realType) (f : cumulative R).

Let m := lebesgue_stieltjes_measure d f ndf.
Let m := lebesgue_stieltjes_measure d f.

Let g : \bar R -> \bar R := EFinf f.

Let lebesgue_stieltjes_measure_itvoc (a b : R) :
(m `]a, b] = hlength f `]a, b])%classic.
Proof.
rewrite /m /lebesgue_stieltjes_measure /= /Hahn_ext measurable_mu_extE//; last first.
by exists (a, b).
exact: hlength_sigma_sub_additive.
rewrite /m /lebesgue_stieltjes_measure /= /Hahn_ext measurable_mu_extE//.
exact: hlength_sigma_sub_additive.
by exists (a, b).
Qed.

Lemma set1Ebigcap (x : R) : [set x] = \bigcap_k `](x - k.+1%:R^-1)%R, x]%classic.
Proof.
apply/seteqP; split => [_ -> k _ /=|].
by rewrite in_itv/= lexx andbT ltr_subl_addl ltr_addr invr_gt0.
move=> y h; apply/eqP/negPn/negP => yx.
red in h.
simpl in h.
Admitted.

Let lebesgue_stieltjes_measure_set1 (a : R) :
m [set a] = ((f a)%:E - (lim (f @ at_left a))%:E)%E.
Proof.
rewrite (set1Ebigcap a).
Admitted.

Let lebesgue_stieltjes_measure_itvoo (a b : R) : a <= b ->
m `]a, b[%classic = ((lim (f @ at_left b))%:E - (f a)%:E)%E.
Proof.
Admitted.

Let lebesgue_stieltjes_measure_itvcc (a b : R) : a <= b ->
m `[a, b]%classic = ((f b)%:E - (lim (f @ at_left a))%:E)%E.
Proof.
Admitted.

Let lebesgue_stieltjes_measure_itvco (a b : R) : a <= b ->
m `[a, b[%classic = ((lim (f @ at_left b))%:E - (lim (f @ at_left a))%:E)%E.
Proof.
Admitted.


End lebesgue_stieltjes_measure_itv.

Example lebesgue_measure d (R : realType)
: set [the measurableType (d.-measurable).-sigma of salgebraType (d.-measurable)] -> \bar R :=
lebesgue_stieltjes_measure _ [the cumulative _ of @idfun R].

0 comments on commit c6b28dc

Please sign in to comment.