Skip to content

Commit

Permalink
left version of a lemma
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Jan 7, 2024
1 parent b3a2dac commit c8915c4
Show file tree
Hide file tree
Showing 3 changed files with 63 additions and 8 deletions.
5 changes: 5 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,7 @@
+ lemma `cvg_at_rightP`
+ lemma `cvg_at_leftP`
+ lemma `cvge_at_rightP`
+ lemma `cvge_at_leftP`
+ lemma `lime_sup`
+ lemma `lime_inf`
+ lemma `lime_supE`
Expand All @@ -80,9 +81,13 @@
+ lemma `lime_inf_sup`
+ lemma `lim_lime_inf`
+ lemma `lim_lime_sup`
+ lemma `lime_sup_inf_at_right`
+ lemma `lime_sup_inf_at_left`

- in `normedtype.v`:
+ lemmas `withinN`, `at_rightN`, `at_leftN`, `cvg_at_leftNP`, `cvg_at_rightNP`
+ lemma `dnbhsN`
+ lemma `limf_esup_dnbhsN`

- in `topology.v`:
+ lemma `dnbhs_ball`
Expand Down
44 changes: 37 additions & 7 deletions theories/normedtype.v
Original file line number Diff line number Diff line change
Expand Up @@ -150,7 +150,7 @@ Local Open Scope classical_set_scope.
Local Open Scope ring_scope.

Section limf_esup_einf.
Variables (T : choiceType) (X : filteredType T) (R : realType).
Variables (T : choiceType) (X : filteredType T) (R : realFieldType).
Implicit Types (f : X -> \bar R) (F : set (set X)).
Local Open Scope ereal_scope.

Expand Down Expand Up @@ -248,6 +248,20 @@ move=> [y [[z Az oppzey] [t Bt opptey]]]; exists (- y).
by split; [rewrite -oppzey opprK|rewrite -opptey opprK].
Qed.

Lemma dnbhsN {R : numFieldType} (r : R) :
(- r)%R^' = (fun A => -%R @` A) @` r^'.
Proof.
apply/seteqP; split=> [A [e/= e0 reA]|_/= [A [e/= e0 reA <-]]].
exists (-%R @` A).
exists e => // x/= rxe xr; exists (- x)%R; rewrite ?opprK//.
by apply: reA; rewrite ?eqr_opp//= opprK addrC distrC.
rewrite image_comp (_ : _ \o _ = idfun) ?image_id// funeqE => x/=.
by rewrite opprK.
exists e => //= x/=; rewrite -opprD normrN => axe xa.
exists (- x)%R; rewrite ?opprK//; apply: reA; rewrite ?eqr_oppLR//=.
by rewrite opprK.
Qed.

Module PseudoMetricNormedZmodule.
Section ClassDef.
Variable R : numDomainType.
Expand Down Expand Up @@ -1663,6 +1677,15 @@ End Exports.
End numFieldNormedType.
Import numFieldNormedType.Exports.

Lemma limf_esup_dnbhsN {R : realType} (f : R -> \bar R) (a : R) :
limf_esup f a^' = limf_esup (fun x => f (- x)%R) (- a)%R^'.
Proof.
rewrite /limf_esup dnbhsN image_comp/=.
congr (ereal_inf [set _ | _ in _]); apply/funext => A /=.
rewrite image_comp/= -compA (_ : _ \o _ = idfun)// funeqE => x/=.
by rewrite opprK.
Qed.

Section NormedModule_numDomainType.
Variables (R : numDomainType) (V : normedModType R).

Expand Down Expand Up @@ -2131,18 +2154,25 @@ move=> r aer ar; rewrite -(opprK r); apply: aeE; last by rewrite -memNE.
by rewrite /= opprK -normrN opprD.
Qed.

Let fun_predC (T : choiceType) (f : T -> T) (p : pred T) : involutive f ->
[set f x | x in p] = [set x | x in p \o f].
Proof.
by move=> fi; apply/seteqP; split => _/= [y hy <-];
exists (f y) => //; rewrite fi.
Qed.

Lemma at_rightN a : (- a)^'+ = -%R @ a^'-.
Proof.
rewrite /at_right withinN (_ : [set - x | x in _] = (fun u => u < a))//.
apply/seteqP; split=> [x [r /[1!ltr_oppl] ? <-//]|x xa/=].
by exists (- x); rewrite 1?ltr_oppr ?opprK.
rewrite /at_right withinN [X in within X _](_ : _ = [set u | u < a])//.
rewrite (@fun_predC _ -%R)/=; last exact: opprK.
by rewrite image_id; under eq_fun do rewrite ltr_oppl opprK.
Qed.

Lemma at_leftN a : (- a)^'- = -%R @ a^'+.
Proof.
rewrite /at_left withinN (_ : [set - x | x in _] = (fun u => a < u))//.
apply/seteqP; split=> [x [r /[1!ltr_oppr] ? <-//]|x xa/=].
by exists (- x); rewrite 1?ltr_oppr ?opprK.
rewrite /at_left withinN [X in within X _](_ : _ = [set u | a < u])//.
rewrite (@fun_predC _ -%R)/=; last exact: opprK.
by rewrite image_id; under eq_fun do rewrite ltr_oppl opprK.
Qed.

End at_left_right.
Expand Down
22 changes: 21 additions & 1 deletion theories/realfun.v
Original file line number Diff line number Diff line change
Expand Up @@ -199,6 +199,18 @@ have {mn} := mfy_ _ mn.
rewrite /y_ /sval; case: cid2 => /= x _.
Unshelve. all: by end_near. Qed.

Lemma cvge_at_leftP (f : R -> \bar R) (p l : R) :
f x @[x --> p^'-] --> l%:E <->
(forall u : R^nat, (forall n, u n < p) /\ u --> p ->
f (u n) @[n --> \oo] --> l%:E).
Proof.
apply: (iff_trans (cvg_at_leftNP f p l%:E)).
apply: (iff_trans (cvge_at_rightP _ _ l)); split=> h u [up pu].
- rewrite (_ : u = \- (\- u))%R; last by apply/funext => ?/=; rewrite opprK.
by apply: h; split; [by move=> n; rewrite ltr_oppl opprK|exact: cvgN].
- by apply: h; split => [n|]; [rewrite ltr_oppl|move/cvgN : pu; rewrite opprK].
Qed.

End cvge_fun_cvg_seq.

Section fun_cvg_realType.
Expand Down Expand Up @@ -744,7 +756,7 @@ have [d {}H] := H e.
by exists d => r /H; rewrite lte_oppl oppeD// EFinN oppeK.
Qed.

Lemma lime_inf_sup_lim f a l :
Lemma lime_sup_inf_at_right f a l :
lime_sup f a = l%:E -> lime_inf f a = l%:E -> f x @[x --> a^'+] --> l%:E.
Proof.
move=> supfpl inffpl; apply/cvge_at_rightP => u [pu up].
Expand Down Expand Up @@ -797,6 +809,14 @@ apply: ereal_sup_ub => /=; exists (u n).
by rewrite fineK//; near: n.
Unshelve. all: by end_near. Qed.

Lemma lime_sup_inf_at_left f a l :
lime_sup f a = l%:E -> lime_inf f a = l%:E -> f x @[x --> a^'-] --> l%:E.
Proof.
move=> supfal inffal; apply/cvg_at_leftNP/lime_sup_inf_at_right.
- by rewrite /lime_sup -limf_esup_dnbhsN.
- by rewrite /lime_inf /lime_sup -(limf_esup_dnbhsN (-%E \o f)) limf_esupN oppeK.
Qed.

End lime_sup_inf.

Section derivable_oo_continuous_bnd.
Expand Down

0 comments on commit c8915c4

Please sign in to comment.