Skip to content

Commit

Permalink
- lnorms
Browse files Browse the repository at this point in the history
- hoelder for sums and specialization
- convexity of powR
  • Loading branch information
hoheinzollern committed Aug 16, 2023
1 parent 1ae5a69 commit d28f783
Showing 1 changed file with 217 additions and 0 deletions.
217 changes: 217 additions & 0 deletions theories/hoelder.v
Original file line number Diff line number Diff line change
Expand Up @@ -194,3 +194,220 @@ by rewrite 2!mule1 -EFinD pq.
Qed.

End hoelder.

Section lnorm.
Context (R : realType).
Local Open Scope ereal_scope.

Definition lnorm (p : R) (f : R^nat) : \bar R :=
(\sum_(x <oo) (`|f x| `^ p)%:E) `^ p^-1.

Local Notation "`| f |~ p" := (lnorm p f).

Lemma ge0_integral_count (a : nat -> \bar R) : (forall k, 0 <= a k) ->
\int[counting]_t (a t) = \sum_(k <oo) (a k).
Proof.
move=> sa.
transitivity (\int[mseries (fun n => [the measure _ _ of \d_ n]) O]_t a t).
congr (integral _ _ _); apply/funext => A.
by rewrite /= counting_dirac.
rewrite (@ge0_integral_measure_series _ _ R (fun n => [the measure _ _ of \d_ n]) setT)//=.
by apply: eq_eseriesr=> i _; rewrite integral_dirac//= indicE mem_set// mul1e.
Qed.

Lemma Lnorm_lnorm_eq p (f : R^nat) : 'N[counting]_p [f] = `| f |~p.
Proof.
rewrite /lnorm -ge0_integral_count// => k.
by rewrite lee_fin powR_ge0.
Qed.

Lemma poweRyr_inv (p : R) (x : \bar R) : x `^ p = +oo -> x = +oo.
Proof.
rewrite /poweR. case:x => //. case: ifPn => //.
Qed.

Lemma not_summable_lnorm_ifty p (f : R^nat) : (0 < p)%R ->
~summable [set: nat] (fun t : nat => (`|f t| `^ p)%:E) -> `| f |~p = +oo%E.
Proof.
rewrite /summable /lnorm=>p0.
rewrite ltNge leye_eq => /negP /negPn /eqP.
rewrite nneseries_esum; last first.
move=> n _; rewrite lee_fin powR_ge0//.
rewrite -fun_true.
under eq_esum => i _ do rewrite gee0_abs ?lee_fin ?powR_ge0//.
by move=> ->; rewrite poweRyr// gt_eqF// invr_gt0.
Qed.

Lemma lnorm_ifty_not_summable p (f : R^nat) : (0 < p)%R ->
lnorm p f = +oo%E -> ~summable [set: nat] (fun t : nat => (`|f t| `^ p)%:E).
Proof.
rewrite /summable /lnorm=>p0 /poweRyr_inv.
under eq_esum => i _ do rewrite gee0_abs ?lee_fin ?powR_ge0//.
rewrite nneseries_esum; last first.
move=> n _; rewrite lee_fin powR_ge0//.
rewrite -fun_true => ->//.
Qed.

Lemma lnorm_ge0 (p : R) (f : R^nat) : (0 <= `| f |~p)%E.
Proof.
rewrite /lnorm poweR_ge0//.
Qed.

End lnorm.

Declare Scope lnorm_scope.
Notation "`| f |~ p" := (lnorm p f) : lnorm_scope.

Section hoelder_sums.
Context (R : realType).
Local Open Scope ereal_scope.
Local Open Scope lnorm_scope.

Lemma hoelder_sums (f g : R^nat) (p q : R) :
measurable_fun setT f -> measurable_fun setT g ->
(0 < p)%R -> (0 < q)%R -> (p^-1 + q^-1 = 1)%R ->
`| (f \* g)%R |~(1) <= `| f |~p * `| g |~q.
Proof.
move=> mf mg p0 q0 pq; rewrite -!Lnorm_lnorm_eq hoelder//.
Qed.

Lemma hoelder_sum2 (a1 a2 b1 b2 : R) (p q : R) : (0 <= a1)%R -> (0 <= a2)%R -> (0 <= b1)%R -> (0 <= b2)%R ->
(0 < p)%R -> (0 < q)%R -> (p^-1 + q^-1 = 1)%R ->
(a1 * b1 + a2 * b2 <= (a1`^p + a2`^p) `^ (p^-1) * (b1`^q + b2`^q)`^(q^-1))%R.
Proof.
move=> a10 a20 b10 b20 p0 q0 pq.
pose f := fun a b n => match n with 0%nat => a | 1%nat => b | _ => 0%R:R end.
have mf a b : measurable_fun setT (f a b). done.
have := @hoelder_sums (f a1 a2) (f b1 b2) p q (mf a1 a2) (mf b1 b2) p0 q0 pq.
rewrite /lnorm.
rewrite (nneseries_split 2); last by move=> k; rewrite lee_fin powR_ge0.
rewrite ereal_series_cond eseries0 ?adde0; last first.
case=>//; case=>// n n2; rewrite /f /= mulr0 normr0 powR0//.
rewrite big_ord_recr /= big_ord_recr /= big_ord0 add0e powRr1 ?normr_ge0// powRr1 ?normr_ge0//.
rewrite (nneseries_split 2); last by move=> k; rewrite lee_fin powR_ge0.
rewrite ereal_series_cond eseries0 ?adde0; last first.
case=>//; case=>// n n2; rewrite /f /= normr0 powR0//; case: eqP=>// p0'; move: p0; rewrite p0' ltxx//.
rewrite big_ord_recr /= big_ord_recr /= big_ord0 add0e -EFinD poweR_EFin.
rewrite (nneseries_split 2); last by move=> k; rewrite lee_fin powR_ge0.
rewrite ereal_series_cond eseries0 ?adde0; last first.
case=>//; case=>// n n2; rewrite /f /= normr0 powR0//; case: eqP=>// q0'; move: q0; rewrite q0' ltxx//.
rewrite big_ord_recr /= big_ord_recr /= big_ord0 add0e -EFinD poweR_EFin.
rewrite -EFinM invr1 powRr1; last by rewrite addr_ge0.
rewrite lee_fin.
rewrite ger0_norm; last by rewrite mulr_ge0.
rewrite ger0_norm; last by rewrite mulr_ge0.
rewrite ger0_norm; last by [].
rewrite ger0_norm; last by [].
rewrite ger0_norm; last by [].
rewrite ger0_norm; last by [].
by [].
Qed.

End hoelder_sums.

Section convex_powR.
Context d (T : measurableType d) (R : realType).
Variable mu : {measure set T -> \bar R}.
Local Open Scope ereal_scope.
Local Open Scope convex_scope.

Local Notation "`| f |~ p" := (Lnorm mu p f).

Lemma ln_le0 (x : R) : (x <= 1 -> ln x <= 0)%R.
Proof.
have [x0|x0 x1] := leP x 0%R.
by rewrite ln0.
by rewrite -ler_expR expR0 lnK.
Qed.

Lemma ger_powR (a : R) : (0 < a <= 1 -> {homo powR a : x y /~ y <= x})%R.
Proof.
move=> /andP [a0 a1] x y xy.
rewrite /powR gt_eqF// ler_expR ler_wnmul2r// ln_le0//.
Qed.

Lemma powR_scale (x y : R) r : (0 < x <= 1 -> 0 <= y -> 1 <= r -> (x * y) `^ r <= x * (y `^ r))%R.
Proof.
move=> /andP [x0 x1] y0 r1.
have x0' : (0 <= x)%R by rewrite le_eqVlt; apply/orP; right.
rewrite powRM//.
rewrite ler_wpmul2r// ?powR_ge0//.
rewrite -[in leRHS](@powRr1 _ x)//.
rewrite ger_powR//.
apply/andP; split=>//.
Qed.

Lemma convex_powR (t : {i01 R}) (x y : R^o) p : (1 <= p)%R ->
(0 <= x)%R -> (0 <= y)%R ->
((x <| t |> y) `^ p <= (x `^ p : R^o) <| t |> y `^ p)%R.
Proof.
move=> p1 x_ge0 y_ge0.
pose w1 := `1-(t%:inum).
pose w2 := t%:inum.
suff: ((w1 *: x + w2 *: y) `^ p<=
(w1 *: (x `^ p : R^o) + w2 *: (y `^ p : R^o)))%R by [].
have [->|w10] := eqVneq w1 0%R.
rewrite scale0r add0r scale0r add0r.
have [->|w20] := eqVneq w2 0%R.
by rewrite !scale0r powR0// gt_eqF ?(lt_le_trans _ p1).
by rewrite powR_scale// /w2 lt_neqAle eq_sym w20 andTb; apply/andP.
have [->|w20] := eqVneq w2 0%R.
rewrite scale0r addr0 scale0r addr0.
by rewrite powR_scale// ?onem_le1// andbT lt_neqAle eq_sym onem_ge0// andbT.
have [->|pn1] := eqVneq p 1%R.
rewrite !powRr1// addr_ge0// mulr_ge0 /w1 /w2//onem_ge0//.
pose q := p / (p - 1).
have q1 : (1 <= q)%R.
rewrite /q ler_pdivl_mulr ?mul1r ?ler_subl_addr ?ler_addl// subr_gt0 lt_neqAle p1 eq_sym pn1//.
rewrite -(@powRr1 _ (w1 *: (x `^ p : R^o) + w2 *: (y `^ p : R^o)))%R; last first.
rewrite addr_ge0// mulr_ge0// ?powR_ge0// /w2 ?onem_ge0// ?itv_ge0.
have -> : (1 = p^-1 * p)%R.
by rewrite mulVf//; apply: lt0r_neq0; rewrite (lt_le_trans _ p1).
rewrite powRrM gt0_ler_powR//.
- by rewrite (@le_trans _ _ 1)%R.
- by rewrite in_itv/= andbT addr_ge0// mulr_ge0/w2/w1 ?onem_ge0.
- by rewrite in_itv/= andbT powR_ge0.
have -> : (w1 *: (x : R^o) + w2 *: (y : R^o) = w1 `^ (p^-1) * w1 `^ (q^-1) *: (x : R^o) + w2 `^ (p^-1) * w2 `^ (q^-1) *: (y : R^o))%R.
rewrite -!powRD; last 2 first.
- by apply /implyP=>_.
- by apply /implyP=>_.
have -> : (p^-1 + q^-1 = 1)%R.
rewrite /q invf_div -{1}(mul1r (p^-1)) -mulrDl (addrC p) addrA subrr add0r mulfV//.
by apply lt0r_neq0; rewrite (lt_le_trans _ p1).
rewrite !powRr1 /w2/w1// onem_ge0//.
apply: (le_trans (y:=(w1 *: (x `^ p : R^o) + w2 *: (y `^ p : R^o)) `^ (p^-1) * (w1+w2) `^ (q^-1)))%R.
pose a1 := (w1 `^ (p^-1) * x)%R.
pose a2 := (w2 `^ (p^-1) * y)%R.
pose b1 := (w1 `^ (q^-1))%R.
pose b2 := (w2 `^ (q^-1))%R.
have : (a1 * b1 + a2 * b2 <= (a1 `^ p + a2 `^ p)`^(p^-1) * (b1 `^ q + b2 `^ q)`^(q^-1))%R.
apply hoelder_sum2 => //.
- by rewrite /a1 mulr_ge0// powR_ge0.
- by rewrite /a2 mulr_ge0// powR_ge0.
- by rewrite /b1 powR_ge0.
- by rewrite /b2 powR_ge0.
- by rewrite (@lt_le_trans _ _ (1)%R).
- by rewrite (@lt_le_trans _ _ (1)%R).
- rewrite /q invf_div -{1}div1r -mulrDl addrC -addrA (addrC _ 1%R) subrr addr0 divff// neq_lt.
by rewrite (@lt_le_trans _ _ 1%R _ p)// orbT.
rewrite /a1/a2/b1/b2.
rewrite powRM ?powR_ge0// -powRrM mulVf; last first.
by rewrite neq_lt (@lt_le_trans _ _ 1 0 p)%R ?orbT.
rewrite powRr1 ?onem_ge0//.
rewrite powRM ?powR_ge0// -powRrM mulVf; last first.
by rewrite neq_lt (@lt_le_trans _ _ 1 0 p)%R ?orbT.
rewrite powRr1; last by rewrite /w2.
rewrite -(@powRrM _ _ _ q) mulVf ?powRr1 ?onem_ge0//; last first.
rewrite neq_lt (@lt_le_trans _ _ 1 0 q)%R// ?orbT//.
rewrite -(@powRrM _ _ _ q) mulVf ?powRr1 ?onem_ge0 /w2//; last first.
rewrite neq_lt (@lt_le_trans _ _ 1 0 q)%R// ?orbT//.
rewrite mulrAC.
rewrite (mulrAC _ y).
move=> /le_trans.
apply.
by [].
rewrite le_eqVlt; apply/orP; left; apply/eqP.
rewrite {2}/w1 {2}/w2 -addrA (addrC (- _)%R) subrr addr0 powR1 mulr1//.
Qed.

End convex_powR.

0 comments on commit d28f783

Please sign in to comment.