Skip to content

Commit

Permalink
variants of existing lemmas
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Aug 9, 2024
1 parent cc30e18 commit d808e08
Show file tree
Hide file tree
Showing 4 changed files with 35 additions and 23 deletions.
9 changes: 8 additions & 1 deletion CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,13 +4,20 @@

### Added

- in `mathcomp_extra.v`:
+ lemmas `invf_ple`, `invf_lep`

- in `lebesgue_integral.v`:
+ lemma `integralZr`

### Changed

### Renamed

### Generalized

- in `reals.v`:
+ lemma `rat_in_itvoo`
+ lemma `rat_in_itvoo` (from `realType` to `archiFieldType`)

### Deprecated

Expand Down
14 changes: 13 additions & 1 deletion classical/mathcomp_extra.v
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,19 @@ Qed.
Lemma invf_ltp (F : numFieldType) :
{in Num.pos &, forall x y : F, (x < y^-1)%R = (y < x^-1)%R}.
Proof.
by move=> x y ? ?; rewrite -[in RHS](@invrK _ y) ltf_pV2// posrE invr_gt0.
by move=> x y ? ?; rewrite -(invrK x) invf_plt ?posrE ?invr_gt0// !invrK.
Qed.

Lemma invf_ple (F : numFieldType) :
{in Num.pos &, forall x y : F, (x^-1 <= y)%R = (y^-1 <= x)%R}.
Proof.
by move=> x y ? ?; rewrite -[in LHS](@invrK _ y) lef_pV2// posrE invr_gt0.
Qed.

Lemma invf_lep (F : numFieldType) :
{in Num.pos &, forall x y : F, (x <= y^-1)%R = (y <= x^-1)%R}.
Proof.
by move=> x y ? ?; rewrite -(invrK x) invf_ple ?posrE ?invr_gt0// !invrK.
Qed.

Definition proj {I} {T : I -> Type} i (f : forall i, T i) := f i.
Expand Down
30 changes: 13 additions & 17 deletions theories/lebesgue_integral.v
Original file line number Diff line number Diff line change
Expand Up @@ -3376,27 +3376,23 @@ Let mesf : measurable_fun D f. Proof. exact: measurable_int intf. Qed.
Lemma integralZl r :
\int[mu]_(x in D) (r%:E * f x) = r%:E * \int[mu]_(x in D) f x.
Proof.
have [r0|r0|->] := ltgtP r 0%R; last first.
by under eq_fun do rewrite mul0e; rewrite mul0e integral0.
- rewrite [in LHS]integralE// gt0_funeposM// gt0_funenegM//.
rewrite (ge0_integralZl_EFin _ _ _ _ (ltW r0)) //; last first.
exact: measurable_funepos.
rewrite (ge0_integralZl_EFin _ _ _ _ (ltW r0)) //; last first.
exact: measurable_funeneg.
rewrite -muleBr 1?[in RHS]integralE//.
exact: integrable_add_def.
have [r0|r0|->] := ltgtP r 0%R.
- rewrite [in LHS]integralE// lt0_funeposM// lt0_funenegM//.
rewrite ge0_integralZl_EFin //; last 2 first.
+ exact: measurable_funeneg.
+ by rewrite -lerNr oppr0 ltW.
rewrite ge0_integralZl_EFin //; last 2 first.
+ exact: measurable_funepos.
+ by rewrite -lerNr oppr0 ltW.
rewrite -mulNe -EFinN opprK addeC EFinN mulNe -muleBr //; last first.
exact: integrable_add_def.
rewrite (ge0_integralZl_EFin _ _ _ (measurable_funeneg _)) ?oppr_ge0 ?ltW//.
rewrite (ge0_integralZl_EFin _ _ _ (measurable_funepos _)) ?oppr_ge0 ?ltW//.
rewrite !EFinN addeC !mulNe oppeK -muleBr ?integrable_add_def//.
by rewrite [in RHS]integralE.
- rewrite [in LHS]integralE// gt0_funeposM// gt0_funenegM//.
rewrite (ge0_integralZl_EFin _ _ _ (measurable_funepos _) (ltW r0))//.
rewrite (ge0_integralZl_EFin _ _ _ (measurable_funeneg _) (ltW r0))//.
by rewrite -muleBr 1?[in RHS]integralE// integrable_add_def.
- by under eq_fun do rewrite mul0e; rewrite mul0e integral0.
Qed.

Lemma integralZr r :
\int[mu]_(x in D) (f x * r%:E) = r%:E * \int[mu]_(x in D) f x.
Proof. by rewrite -integralZl; under eq_integral do rewrite muleC. Qed.

End linearityZ.
#[deprecated(since="mathcomp-analysis 0.6.4", note="use `integralZl` instead")]
Notation integralM := integralZl (only parsing).
Expand Down
5 changes: 1 addition & 4 deletions theories/probability.v
Original file line number Diff line number Diff line change
Expand Up @@ -159,10 +159,7 @@ Qed.

Lemma expectationM (X : {RV P >-> R}) (iX : P.-integrable [set: T] (EFin \o X))
(k : R) : 'E_P[k \o* X] = k%:E * 'E_P [X].
Proof.
rewrite unlock; under eq_integral do rewrite EFinM.
by rewrite -integralZl//; under eq_integral do rewrite muleC.
Qed.
Proof. by rewrite unlock -integralZr. Qed.

Lemma expectation_ge0 (X : {RV P >-> R}) :
(forall x, 0 <= X x)%R -> 0 <= 'E_P[X].
Expand Down

0 comments on commit d808e08

Please sign in to comment.