Skip to content

Commit

Permalink
tentative proof of Hoelder's inequality
Browse files Browse the repository at this point in the history
Co-authored-by: Alessandro Bruni <[email protected]>
  • Loading branch information
affeldt-aist and hoheinzollern committed Jul 6, 2023
1 parent 6fdab09 commit d81eca8
Show file tree
Hide file tree
Showing 3 changed files with 255 additions and 1 deletion.
2 changes: 2 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,8 @@
+ definition `poweRD_def`
+ lemmas `poweRD_defE`, `poweRB_defE`, `add_neq0_poweRD_def`,
`add_neq0_poweRB_def`, `nneg_neq0_poweRD_def`, `nneg_neq0_poweRB_def`
- in `lebesgue_measure.v`:
+ lemma `measurable_mulrr`

### Changed

Expand Down
248 changes: 247 additions & 1 deletion theories/lebesgue_integral.v
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ From mathcomp Require Import all_ssreflect ssralg ssrnum ssrint interval finmap.
From mathcomp Require Import mathcomp_extra boolp classical_sets functions.
From mathcomp Require Import cardinality fsbigop .
Require Import signed reals ereal topology normedtype sequences real_interval.
Require Import esum measure lebesgue_measure numfun.
Require Import esum measure lebesgue_measure numfun exp itv.

(******************************************************************************)
(* Lebesgue Integral *)
Expand Down Expand Up @@ -5122,3 +5122,249 @@ Qed.

End sfinite_fubini.
Arguments sfinite_Fubini {d d' X Y R} m1 m2 f.

Reserved Notation "''N_' p [ f ]" (format "''N_' p [ f ]", at level 5).

Section L_norm.
Context d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}).
Local Open Scope ereal_scope.

Definition L_norm (p : R) (f : T -> R) : \bar R :=
(\int[mu]_x (`|f x| `^ p)%:E) `^ p^-1.

Local Notation "''N_' p [ f ]" := (L_norm p f).

Lemma L_norm_ge0 (p : R) (f : T -> R) : (0 <= 'N_p[f])%E.
Proof. by rewrite /L_norm poweR_ge0. Qed.

Lemma eq_L_norm (p : R) (f g : T -> R) : f =1 g -> 'N_p [f] = 'N_p [g].
Proof. by move=> fg; congr L_norm; exact/funext. Qed.

End L_norm.
#[global]
Hint Extern 0 (0 <= L_norm _ _ _) => solve [apply: L_norm_ge0] : core.

Local Open Scope ereal_scope.
Lemma eqe_pdivr_mull (R : realFieldType) (r : R) (x y : \bar R) :
(r != 0)%R -> ((r^-1)%:E * y == x) = (y == r%:E * x).
Proof.
rewrite neq_lt => /orP[|] r0.
- by rewrite eq_le lee_ndivr_mull// lee_ndivl_mull// -eq_le.
- by rewrite eq_le lee_pdivr_mull// lee_pdivl_mull// -eq_le.
Qed.
Local Close Scope ereal_scope.

Section hoelder.
Context d (T : measurableType d) (R : realType).
Variable mu : {measure set T -> \bar R}.
Local Open Scope ereal_scope.

Local Notation "''N_' p [ f ]" := (L_norm mu p f).

Let measurableT_comp_powR (f : T -> R) p :
measurable_fun setT f -> measurable_fun setT (fun x => f x `^ p)%R.
Proof. exact: (@measurableT_comp _ _ _ _ _ _ (@powR R ^~ p)). Qed.

Let integrable_powR (f : T -> R) p : (0 < p)%R ->
measurable_fun setT f -> 'N_p[f] != +oo ->
mu.-integrable [set: T] (fun x => (`|f x| `^ p)%:E).
Proof.
move=> p0 mf foo; apply/integrableP; split.
apply: measurableT_comp => //; apply: measurableT_comp_powR.
exact: measurableT_comp.
rewrite ltey; apply: contra foo.
move=> /eqP/(@eqy_poweR _ _ p^-1); rewrite invr_gt0 => /(_ p0) <-.
apply/eqP; congr (_ `^ _); apply/eq_integral.
by move=> x _; rewrite gee0_abs // ?lee_fin ?powR_ge0.
Qed.

Let hoelder0 (f g : T -> R) (p q : R) :
measurable_fun setT f -> measurable_fun setT g ->
(0 < p)%R -> (0 < q)%R -> (p^-1 + q^-1 = 1)%R ->
'N_p[f] = 0 ->
'N_1 [(f \* g)%R] <= 'N_p [f] * 'N_q [g].
Proof.
move=> mf mg p0 q0 pq f0; rewrite f0 mul0e.
suff: 'N_1 [(f \* g)%R] = 0%E by move=> ->.
move: f0; rewrite /L_norm => /poweR_eq0_eq0.
rewrite /= invr1 poweRe1// => [fp|]; last first.
by apply: integral_ge0 => x _; rewrite lee_fin; exact: powR_ge0.
have {fp}f0 : ae_eq mu setT (fun x => (`|f x| `^ p)%:E) (cst 0).
apply/ae_eq_integral_abs => //=.
- apply: measurableT_comp => //; apply: measurableT_comp_powR.
exact: measurableT_comp.
- under eq_integral => x _ do rewrite ger0_norm ?powR_ge0//.
by apply: fp; apply: integral_ge0 => t _; exact: powR_ge0.
rewrite (ae_eq_integral (cst 0)%E) => [|//||//|].
- by rewrite integral0.
- apply: measurableT_comp => //; apply: measurableT_comp_powR => //.
by apply: measurableT_comp => //; exact: measurable_funM.
- apply: filterS f0 => x /(_ I) /= [] /powR_eq0_eq0 fp0 _.
by rewrite powRr1// normrM fp0 mul0r.
Qed.

Let normed p f x := `|f x| / fine 'N_p[f].

Let normed_ge0 p f x : (0 <= normed p f x)%R.
Proof. by rewrite /normed divr_ge0// fine_ge0// L_norm_ge0. Qed.

Let measurable_normed p f : measurable_fun setT f ->
measurable_fun setT (normed p f).
Proof.
move=> mf; rewrite (_ : normed _ _ = *%R (fine 'N_p[f])^-1 \o normr \o f).
by apply: measurableT_comp => //; exact: measurableT_comp.
by apply/funext => x /=; rewrite mulrC.
Qed.

Let normed_expR p f x : (0 < p)%R ->
let F := normed p f in F x != 0%R -> expR (ln (F x `^ p) / p) = F x.
Proof.
move=> p0 F Fx0.
rewrite ln_powR// mulrAC divff// ?gt_eqF// mul1r.
by rewrite lnK// posrE lt_neqAle normed_ge0 eq_sym Fx0.
Qed.

Let integral_normed f p : (0 < p)%R -> 0 < 'N_p[f] ->
mu.-integrable [set: T] (fun x => (`|f x| `^ p)%:E) ->
\int[mu]_x (normed p f x `^ p)%:E = 1.
Proof.
move=> p0 fpos ifp.
transitivity (\int[mu]_x (`|f x| `^ p / fine ('N_p[f] `^ p))%:E).
apply: eq_integral => t _.
rewrite powRM//; last by rewrite invr_ge0 fine_ge0 // L_norm_ge0.
rewrite -powR_inv1; last by rewrite fine_ge0 // L_norm_ge0.
by rewrite fine_poweR powRAC -powR_inv1 // powR_ge0.
rewrite /L_norm -poweRrM mulVf ?lt0r_neq0// poweRe1; last first.
by apply integral_ge0 => x _; rewrite lee_fin; exact: powR_ge0.
under eq_integral do rewrite EFinM muleC.
rewrite integralM//; apply/eqP; rewrite eqe_pdivr_mull ?mule1; last first.
rewrite gt_eqF// fine_gt0//; apply/andP; split.
apply: gt0_poweR fpos; rewrite ?invr_gt0//.
by apply: integral_ge0 => x _; rewrite lee_fin// powR_ge0.
move/integrableP: ifp => -[_].
under eq_integral.
move=> x _; rewrite gee0_abs//; last by rewrite lee_fin powR_ge0.
over.
by [].
(* TODO: redondance *)
rewrite fineK// ge0_fin_numE//; last first.
by rewrite integral_ge0// => x _; rewrite lee_fin// powR_ge0.
move/integrableP: ifp => -[_].
under eq_integral.
move=> x _; rewrite gee0_abs//; last by rewrite lee_fin powR_ge0.
over.
by [].
Qed.

Lemma hoelder (f g : T -> R) (p q : R) :
measurable_fun setT f -> measurable_fun setT g ->
(0 < p)%R -> (0 < q)%R -> (p^-1 + q^-1 = 1)%R ->
'N_1 [(f \* g)%R] <= 'N_p [f] * 'N_q [g].
Proof.
move=> mf mg p0 q0 pq.
have [f0|f0] := eqVneq 'N_p[f] 0%E; first exact: hoelder0.
have [g0|g0] := eqVneq 'N_q[g] 0%E.
rewrite muleC; apply: le_trans; last by apply: hoelder0 => //; rewrite addrC.
by under eq_L_norm do rewrite /= mulrC.
have {f0}fpos : 0 < 'N_p[f] by rewrite lt_neqAle eq_sym f0//= L_norm_ge0.
have {g0}gpos : 0 < 'N_q[g] by rewrite lt_neqAle eq_sym g0//= L_norm_ge0.
have [foo|foo] := eqVneq 'N_p[f] +oo%E; first by rewrite foo gt0_mulye ?leey.
have [goo|goo] := eqVneq 'N_q[g] +oo%E; first by rewrite goo gt0_muley ?leey.
pose F := normed p f.
pose G := normed q g.
have exp_convex x : (F x * G x <= F x `^ p / p + G x `^ q / q)%R.
have [Fx0|Fx0] := eqVneq (F x) 0%R.
by rewrite Fx0 mul0r powR0 ?gt_eqF// mul0r add0r divr_ge0 ?powR_ge0 ?ltW.
have {}Fx0 : (0 < F x)%R.
by rewrite lt_neqAle eq_sym Fx0 divr_ge0// fine_ge0// L_norm_ge0.
have [Gx0|Gx0] := eqVneq (G x) 0%R.
by rewrite Gx0 mulr0 powR0 ?gt_eqF// mul0r addr0 divr_ge0 ?powR_ge0 ?ltW.
have {}Gx0 : (0 < G x)%R.
by rewrite lt_neqAle eq_sym Gx0/= divr_ge0// fine_ge0// L_norm_ge0.
pose s x := ln ((F x) `^ p).
pose t x := ln ((G x) `^ q).
have : (expR (p^-1 * s x + q^-1 * t x) <= p^-1 * expR (s x) + q^-1 * expR (t x))%R.
have -> : (p^-1 = 1 - q^-1)%R by rewrite -pq addrK.
have K : (q^-1 \in `[0, 1])%R.
by rewrite in_itv/= invr_ge0 (ltW q0)/= -pq ler_paddl// invr_ge0 ltW.
exact: (convex_expR (@Itv.mk _ `[0, 1] q^-1 K)%R).
rewrite expRD (mulrC _ (s x)) normed_expR ?gt_eqF// -/(F x).
rewrite (mulrC _ (t x)) normed_expR ?gt_eqF// -/(G x) => /le_trans; apply.
rewrite /s /t [X in (_ * X + _)%R](@lnK _ (F x `^ p)%R); last first.
by rewrite posrE powR_gt0.
rewrite (@lnK _ (G x `^ q)%R); last by rewrite posrE powR_gt0.
by rewrite mulrC (mulrC _ q^-1).
have -> : 'N_1[(f \* g)%R] = 'N_1[(F \* G)%R] * 'N_p[f] * 'N_q[g].
rewrite {1}/L_norm; under eq_integral => x _ do rewrite powRr1 //.
rewrite invr1 poweRe1; last by apply: integral_ge0 => x _; rewrite lee_fin.
rewrite {1}/L_norm.
under [in RHS]eq_integral.
move=> x _.
rewrite /F /G /= /normed (mulrC `|f x|)%R mulrA -(mulrA (_^-1)) (mulrC (_^-1)) -mulrA.
rewrite ger0_norm; last first.
by rewrite mulr_ge0// divr_ge0 ?(fine_ge0,L_norm_ge0,invr_ge0).
rewrite powRr1; last first.
by rewrite mulr_ge0// divr_ge0 ?(fine_ge0,L_norm_ge0,invr_ge0).
rewrite mulrC -normrM EFinM.
over.
rewrite /=.
rewrite ge0_integralM//; last 2 first.
- apply: measurableT_comp => //; apply: measurableT_comp => //.
exact: measurable_funM.
- by rewrite lee_fin mulr_ge0// invr_ge0 fine_ge0// L_norm_ge0.
rewrite -muleA muleC invr1 poweRe1; last first.
rewrite mule_ge0//.
by rewrite lee_fin mulr_ge0// invr_ge0 fine_ge0// L_norm_ge0.
by apply integral_ge0 => x _; rewrite lee_fin.
rewrite muleA EFinM.
rewrite muleCA 2!muleA (_ : _ * 'N_p[f] = 1) (*TODO: awkward *) ?mul1e; last first.
apply/eqP; rewrite eqe_pdivr_mull ?mule1; last first.
by rewrite gt_eqF// fine_gt0// fpos/= ltey.
by rewrite fineK// ?ge0_fin_numE ?ltey// L_norm_ge0.
rewrite (_ : 'N_q[g] * _ = 1) (*TODO: awkward *) ?mul1e// muleC.
apply/eqP; rewrite eqe_pdivr_mull ?mule1; last first.
by rewrite gt_eqF// fine_gt0// gpos/= ltey.
by rewrite fineK// ?ge0_fin_numE ?ltey// L_norm_ge0.
rewrite -(mul1e ('N_p[f] * _)) -muleA lee_pmul ?mule_ge0 ?L_norm_ge0//.
apply: (@le_trans _ _ (\int[mu]_x (F x `^ p / p + G x `^ q / q)%:E)).
rewrite /L_norm invr1 poweRe1; last first.
by apply integral_ge0 => x _; rewrite lee_fin; exact: powR_ge0.
apply: ae_ge0_le_integral => //.
- by move=> x _; exact: powR_ge0.
- apply: measurableT_comp => //; apply: measurableT_comp_powR => //.
apply: measurableT_comp => //.
by apply: measurable_funM => //; exact: measurable_normed.
- by move=> x _; rewrite lee_fin addr_ge0// divr_ge0// ?powR_ge0// ltW.
- apply: measurableT_comp => //; apply: measurable_funD => //; apply: measurable_funM => //;
by apply: measurableT_comp_powR => //; exact: measurable_normed.
apply/aeW => x _.
by rewrite lee_fin powRr1// ger0_norm ?exp_convex// mulr_ge0// normed_ge0.
rewrite le_eqVlt; apply/orP; left; apply/eqP.
under eq_integral.
by move=> x _; rewrite EFinD mulrC (mulrC _ (_^-1)); over.
rewrite ge0_integralD//; last 4 first.
- by move=> x _; rewrite lee_fin mulr_ge0// ?invr_ge0 ?powR_ge0// ltW.
- apply: measurableT_comp => //; apply: measurableT_comp => //.
by apply: measurableT_comp_powR => //; exact: measurable_normed.
- by move=> x _; rewrite lee_fin mulr_ge0// ?invr_ge0 ?powR_ge0// ltW.
- apply: measurableT_comp => //; apply: measurableT_comp => //.
by apply: measurableT_comp_powR => //; exact: measurable_normed.
under eq_integral do rewrite EFinM.
rewrite {1}ge0_integralM//; last 3 first.
- apply: measurableT_comp => //.
by apply: measurableT_comp_powR => //; exact: measurable_normed.
- by move=> x _; rewrite lee_fin powR_ge0.
- by rewrite lee_fin invr_ge0 ltW.
under [X in (_ + X)%E]eq_integral => x _ do rewrite EFinM.
rewrite ge0_integralM//; last 3 first.
- apply: measurableT_comp => //.
by apply: measurableT_comp_powR => //; exact: measurable_normed.
- by move=> x _; rewrite lee_fin powR_ge0.
- by rewrite lee_fin invr_ge0 ltW.
rewrite integral_normed//; last exact: integrable_powR.
rewrite integral_normed//; last exact: integrable_powR.
by rewrite 2!mule1 -EFinD pq.
Qed.

End hoelder.
6 changes: 6 additions & 0 deletions theories/lebesgue_measure.v
Original file line number Diff line number Diff line change
Expand Up @@ -1487,6 +1487,12 @@ apply: measurable_funTS => /=.
by apply: continuous_measurable_fun; exact: mulrl_continuous.
Qed.

Lemma measurable_mulrr D (k : R) : measurable_fun D (fun x => x * k).
Proof.
apply: measurable_funTS => /=.
by apply: continuous_measurable_fun; exact: mulrr_continuous.
Qed.

Lemma measurable_exprn D n : measurable_fun D (fun x => x ^+ n).
Proof.
apply measurable_funTS => /=.
Expand Down

0 comments on commit d81eca8

Please sign in to comment.