Skip to content

Commit

Permalink
fix
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Dec 3, 2024
1 parent 96a7885 commit d94c298
Show file tree
Hide file tree
Showing 2 changed files with 4 additions and 12 deletions.
4 changes: 2 additions & 2 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,6 @@
+ `emeasurable_fun_sum` -> `emeasurable_sum`
+ `emeasurable_fun_fsum` -> `emeasurable_fsum`
+ `ge0_emeasurable_fun_sum` -> `ge0_emeasurable_sum`
- in `measure.v`:
+ `dynkin_setI_bigsetI` -> `setT_setI_bigsetI`

- in `classical_sets.v`:
+ `preimage_itv_o_infty` -> `preimage_itvoy`
Expand Down Expand Up @@ -67,6 +65,8 @@
- in `constructive_ereal.v`
+ notation `lee_opp` (deprecated since 0.6.5)
+ notation `lte_opp` (deprecated since 0.6.5)
- in `measure.v`:
+ `dynkin_setI_bigsetI` (use `big_ind` instead)

### Infrastructure

Expand Down
12 changes: 2 additions & 10 deletions theories/measure.v
Original file line number Diff line number Diff line change
Expand Up @@ -866,14 +866,6 @@ case=> ? DC DU; split => [| |? ? ?]; last exact: DU.
- by move=> A GA; rewrite -setTD; apply: DC.
Qed.

Lemma setT_setI_bigsetI (I0 : choiceType) (J : seq I0) G (F : I0 -> set T) :
G [set: T] -> setI_closed G -> (forall i, i \in J -> G (F i)) ->
G (\big[setI/setT]_(i <- J) F i).
Proof.
move=> GT GI; rewrite big_seq; elim/big_rec : _ => //.
by move=> i A iJ ih GF; apply: GI => //; [exact: GF|exact: ih].
Qed.

Lemma dynkin_setI_sigma_algebra G : dynkin G -> setI_closed G ->
sigma_algebra setT G.
Proof.
Expand All @@ -883,7 +875,7 @@ move=> dG GI; split => [|//|F DF].
- rewrite seqDU_bigcup_eq; apply/(dynkinU dG) => //.
move=> n; rewrite /seqDU setDE; apply GI => //.
rewrite -bigcup_mkord setC_bigcup bigcap_mkord.
apply: setT_setI_bigsetI => //=; first by case: dG.
apply: big_ind => //; first by case: dG.
by move=> i _; exact/(dynkinC dG).
Qed.

Expand Down Expand Up @@ -1072,7 +1064,7 @@ HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
HB.structure Definition SemiRingOfSets d :=
{T of Pointed T & isSemiRingOfSets d T}.

Arguments measurable {d}%measure_display_scope {s} _%classical_set_scope.
Arguments measurable {d}%_measure_display_scope {s} _%_classical_set_scope.

Lemma measurable_curry (T1 T2 : Type) d (T : semiRingOfSetsType d)
(G : T1 * T2 -> set T) (x : T1 * T2) :
Expand Down

0 comments on commit d94c298

Please sign in to comment.