Skip to content

Commit

Permalink
rebase and suggestions
Browse files Browse the repository at this point in the history
  • Loading branch information
Tragicus committed Jan 18, 2024
1 parent bfd387e commit e1626e7
Show file tree
Hide file tree
Showing 2 changed files with 83 additions and 183 deletions.
172 changes: 1 addition & 171 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,130 +9,9 @@

- in `lebesgue_measure.v`:
+ `sigma_finite_measure` HB instance on `lebesgue_measure`
- in `normedtype.v`:
+ hints for `at_right_proper_filter` and `at_left_proper_filter`

- in `realfun.v`:
+ notations `nondecreasing_fun`, `nonincreasing_fun`,
`increasing_fun`, `decreasing_fun`
+ lemmas `cvg_addrl`, `cvg_addrr`, `cvg_centerr`, `cvg_shiftr`,
`nondecreasing_cvgr`,
`nonincreasing_at_right_cvgr`,
`nondecreasing_at_right_cvgr`,
`nondecreasing_cvge`, `nondecreasing_is_cvge`,
`nondecreasing_at_right_cvge`, `nondecreasing_at_right_is_cvge`,
`nonincreasing_at_right_cvge`, `nonincreasing_at_right_is_cvge`
- in `ereal.v`:
+ lemmas `ereal_sup_le`, `ereal_inf_le`

- in `normedtype.v`:
+ definition `lower_semicontinuous`
+ lemma `lower_semicontinuousP`

- in `numfun.v`:
+ lemma `patch_indic`

- in `lebesgue_measure.v`
+ lemma `lower_semicontinuous_measurable`

- in `lebesgue_integral.v`:
+ definition `locally_integrable`
+ lemmas `integrable_locally`, `locally_integrableN`, `locally_integrableD`,
`locally_integrableB`
+ definition `iavg`
+ lemmas `iavg0`, `iavg_ge0`, `iavg_restrict`, `iavgD`
+ definitions `HL_maximal`
+ lemmas `HL_maximal_ge0`, `HL_maximalT_ge0`,
`lower_semicontinuous_HL_maximal`, `measurable_HL_maximal`,
`maximal_inequality`

- in file `measure.v`
+ add lemmas `ae_eq_subset`, `measure_dominates_ae_eq`.

- in `charge.v`
+ definition `charge_of_finite_measure` (instance of `charge`)
+ lemmas `dominates_cscalel`, `dominates_cscaler`
+ definition `cpushforward` (instance of `charge`)
+ lemma `dominates_pushforward`
+ lemma `cjordan_posE`
+ lemma `jordan_posE`
+ lemma `cjordan_negE`
+ lemma `jordan_negE`
+ lemma `Radon_Nikodym_sigma_finite`
+ lemma `Radon_Nikodym_fin_num`
+ lemma `Radon_Nikodym_integral`
+ lemma `ae_eq_Radon_Nikodym_SigmaFinite`
+ lemma `Radon_Nikodym_change_of_variables`
+ lemma `Radon_Nikodym_cscale`
+ lemma `Radon_Nikodym_cadd`
+ lemma `Radon_Nikodym_chain_rule`

- in `sequences.v`:
+ lemma `minr_cvg_0_cvg_0`
+ lemma `mine_cvg_0_cvg_fin_num`
+ lemma `mine_cvg_minr_cvg`
+ lemma `mine_cvg_0_cvg_0`
+ lemma `maxr_cvg_0_cvg_0`
+ lemma `maxe_cvg_0_cvg_fin_num`
+ lemma `maxe_cvg_maxr_cvg`
+ lemma `maxe_cvg_0_cvg_0`
- in `constructive_ereal.v`
+ lemma `lee_subgt0Pr`

- in `topology.v`:
+ lemma `nbhs_dnbhs_neq`

- in `normedtype.v`:
+ lemma `not_near_at_rightP`

- in `realfun.v`:
+ lemma `cvg_at_right_left_dnbhs`
+ lemma `cvg_at_rightP`
+ lemma `cvg_at_leftP`
+ lemma `cvge_at_rightP`
+ lemma `cvge_at_leftP`
+ lemma `lime_sup`
+ lemma `lime_inf`
+ lemma `lime_supE`
+ lemma `lime_infE`
+ lemma `lime_infN`
+ lemma `lime_supN`
+ lemma `lime_sup_ge0`
+ lemma `lime_inf_ge0`
+ lemma `lime_supD`
+ lemma `lime_sup_le`
+ lemma `lime_inf_sup`
+ lemma `lim_lime_inf`
+ lemma `lim_lime_sup`
+ lemma `lime_sup_inf_at_right`
+ lemma `lime_sup_inf_at_left`

- in `normedtype.v`:
+ lemmas `withinN`, `at_rightN`, `at_leftN`, `cvg_at_leftNP`, `cvg_at_rightNP`
+ lemma `dnbhsN`
+ lemma `limf_esup_dnbhsN`

- in `topology.v`:
+ lemma `dnbhs_ball`

- in `normedtype.v`
+ definitions `limf_esup`, `limf_einf`
+ lemmas `limf_esupE`, `limf_einfE`, `limf_esupN`, `limf_einfN`

- in `sequences.v`:
+ lemmas `limn_esup_lim`, `limn_einf_lim`

- in `realfun.v`:
+ lemmas `lime_sup_lim`, `lime_inf_lim`

- in `boolp.v`:
+ tactic `eqProp`
+ variant `BoolProp`
+ lemmas `PropB`, `notB`, `andB`, `orB`, `implyB`, `decide_or`, `not_andE`,
`not_orE`, `orCA`, `orAC`, `orACA`, `orNp`, `orpN`, `or3E`, `or4E`, `andCA`,
`andAC`, `andACA`, `and3E`, `and4E`, `and5E`, `implyNp`, `implypN`,
`implyNN`, `or_andr`, `or_andl`, `and_orr`, `and_orl`, `exists2E`,
`inhabitedE`, `inhabited_witness`
+ `sigma_finite_measure` instance on product measure `\x`

- file `contra.v`
- in `contra.v`
Expand All @@ -148,47 +27,6 @@
`absurd : ident(H)`, `absurd : { hyp_list(Hs) } constr(H)`,
`absurd : { hyp_list(Hs) } ident(H)`

### Changed
- in `topology.v`
+ definition `fct_restrictedUniformType` changed to use `weak_uniformType`
+ definition `family_cvg_topologicalType` changed to use `sup_uniformType`

- in `constructive_ereal.v`:
+ lemmas `lee_paddl`, `lte_paddl`, `lee_paddr`, `lte_paddr`,
`lte_spaddr`, `lee_pdaddl`, `lte_pdaddl`, `lee_pdaddr`,
`lte_pdaddr`, `lte_spdaddr` generalized to `realDomainType`
- in `constructive_ereal.v`:
+ generalize `lte_addl`, `lte_addr`, `gte_subl`, `gte_subr`,
`lte_daddl`, `lte_daddr`, `gte_dsubl`, `gte_dsubr`
- in `topology.v`:
+ lemmas `continuous_subspace0`, `continuous_subspace1`

- in `realfun.v`:
+ notations `nondecreasing_fun`, `nonincreasing_fun`,
`increasing_fun`, `decreasing_fun`
+ lemmas `cvg_addrl`, `cvg_addrr`, `cvg_centerr`, `cvg_shiftr`,
`nondecreasing_cvgr`,
`nonincreasing_at_right_cvgr`,
`nondecreasing_at_right_cvgr`,
`nondecreasing_cvge`, `nondecreasing_is_cvge`,
`nondecreasing_at_right_cvge`, `nondecreasing_at_right_is_cvge`,
`nonincreasing_at_right_cvge`, `nonincreasing_at_right_is_cvge`
- in `ereal.v`:
+ lemmas `ereal_sup_le`, `ereal_inf_le`

- in `normedtype.v`:
+ definition `lower_semicontinuous`
+ lemma `lower_semicontinuousP`

- in `numfun.v`:
+ lemma `patch_indic`

- in `lebesgue_measure.v`
+ lemma `lower_semicontinuous_measurable`

- in `lebesgue_integral.v`:
+ `sigma_finite_measure` instance on product measure `\x`

- in `topology.v`:
+ lemma `filter_bigI_within`
+ lemma `near_powerset_map`
Expand Down Expand Up @@ -221,14 +59,6 @@
+ lemma `continuous_uncurry`
+ lemma `curry_continuous`
+ lemma `uncurry_continuous`
- in `boolp.v`:
+ tactic `eqProp`
+ variant `BoolProp`
+ lemmas `PropB`, `notB`, `andB`, `orB`, `implyB`, `decide_or`, `not_andE`,
`not_orE`, `orCA`, `orAC`, `orACA`, `orNp`, `orpN`, `or3E`, `or4E`, `andCA`,
`andAC`, `andACA`, `and3E`, `and4E`, `and5E`, `implyNp`, `implypN`,
`implyNN`, `or_andr`, `or_andl`, `and_orr`, `and_orl`, `exists2E`,
`inhabitedE`, `inhabited_witness`

### Changed

Expand Down
94 changes: 82 additions & 12 deletions classical/contra.v
Original file line number Diff line number Diff line change
Expand Up @@ -20,11 +20,8 @@ Unset Printing Implicit Defensive.
(* Caveat: absurd_not cannot be used as a move/ view because *)
(* its conclusion is indeterminate. The more general notP can *)
(* be used instead. *)
(* contra == proof by contraposition. Assume the negation of the goal *)
(* conclusion, and prove the negation of a given assumption. *)
(* The defective form contra (which can also be written *)
(* contrapose) expects the assumption to be pushed on the goal *)
(* which thus has the form assumption -> conclusion. *)
(* contra == proof by contraposition. Change a goal of the form *)
(* assumption -> conclusion to ~ conclusion -> ~ assumption. *)
(* As with assume_not, contra allows both assumption and *)
(* conclusion to be in Type, simplifies the negation of both *)
(* assumption and conclusion, and exposes the constructive *)
Expand Down Expand Up @@ -299,7 +296,7 @@ Canonical or4_nProp tP nP P tQ nQ Q tR nR R tS nS S :=
(* both here for the imply_nProp instance and for bounded_forall_nProp below. *)
(* Because the andRHS instances match the Prop RETURNED by negatedProp they *)
(* do not need to expand definitions, hence do not need to use the wrapper *)
(* telescope pattern. *)
(* telescope pattern. *)
(******************************************************************************)

Notation and_def binary P Q PQ := (PQ = if binary then P /\ Q else Q)%type.
Expand Down Expand Up @@ -338,8 +335,8 @@ Canonical inhabited_nProp T := ProperNegatedProp (inhabited_nPropP T).
(* We use tertiary structures to recognize bounded foralls and simplify, *)
(* e.g., ~ forall x, P -> Q to exists2 x, P & ~ Q, or even exists x, P when *)
(* Q := False (as above for imply). *)
(* As forall_body_nProp and forall_body_proper_nProp are telescopes *)
(* over negatedProp and properNegatedProp, respectively, their instances *)
(* As forall_body_nProp and forall_body_proper_nProp are telescopes *)
(* over negatedProp and properNegatedProp, respectively, their instances *)
(* match instances declared above without the need to expand definitions, *)
(* hence do not need to use the wrapper telescope idiom. *)
(******************************************************************************)
Expand All @@ -355,7 +352,7 @@ Notation nBody b P nQ t nR x := (negatedForallBody b (P x) (nQ x) t (nR x)).
(* unification code that prevents default instances from ever matching match *)
(* constructs. Furthermore rewriting with ifE would not work here, because *)
(* the if_expr definition would be expanded by the eta expansion needed to *)
(* match the exists_nProp rule. *)
(* match the exists_nProp rule. *)
(******************************************************************************)

Fact forall_nPropP A b P nQ tR nR (R : forall x, nBody b P nQ tR nR x) :
Expand Down Expand Up @@ -731,7 +728,7 @@ Canonical exists2_wProp A s S P0 P t T Q0 Q :=
(* contra_Type converts an arbitrary function goal (with assumption and *)
(* conclusion in Type) to an equivalent contrapositive Prop implication. *)
(* contra_notP simplifies a contrapositive ~ Q -> ~ P goal using *)
(* negatedProp instances. *)
(* negatedProp instances. *)
(******************************************************************************)

Local Fact push_goal_copy {T} : ((T -> T) -> T) -> T. Proof. exact. Qed.
Expand All @@ -749,6 +746,76 @@ Proof. by rewrite 2!lax_notE. Qed.

End Internals.
Import Internals.
Canonical TypeForall.
Canonical PropForall.
Canonical SetForall.
Canonical wrap1Prop.
Canonical wrap1Type.
Canonical proper_nProp.
Canonical trivial_nProp.
Canonical True_nProp.
Canonical False_nProp.
Canonical not_nProp.
Canonical and_nProp.
Canonical and3_nProp.
Canonical and4_nProp.
Canonical and5_nProp.
Canonical or_nProp.
Canonical or3_nProp.
Canonical or4_nProp.
Canonical unary_and_rhs.
Canonical binary_and_rhs.
Canonical imply_nProp.
Canonical exists_nProp.
Canonical exists2_nProp.
Canonical inhabited_nProp.
Canonical forall_nProp.
Canonical proper_nBody.
Canonical nonproper_nBody.
Canonical bounded_nBody.
Canonical unbounded_nBody.
Canonical is_true_nProp.
Canonical true_neg.
Canonical true_pos.
Canonical false_neg.
Canonical false_pos.
Canonical id_neg.
Canonical id_pos.
Canonical negb_neg.
Canonical negb_pos.
Canonical neg_ltn_LHS.
Canonical neg_leq_LHS.
Canonical leq_neg.
Canonical eq_nProp.
Canonical bool_neq.
Canonical true_neq.
Canonical false_neq.
Canonical eqType_neq.
Canonical eq_op_pos.
Canonical Prop_wType.
Canonical proper_wType.
Canonical forall_wType.
Canonical inhabited_wType.
Canonical void_wType.
Canonical unit_wType.
Canonical pair_wType.
Canonical sum_wType.
Canonical sumbool_wType.
Canonical sumor_wType.
Canonical sig1_wType.
Canonical sig2_wType.
Canonical sigT_wType.
Canonical sigT2_wType.
Canonical proper_wProp.
Canonical forall_wProp.
Canonical trivial_wProp.
Canonical inhabited_wProp.
Canonical nand_false_bool.
Canonical nand_true_bool.
Canonical and_wProp.
Canonical or_wProp.
Canonical exists_wProp.
Canonical exists2_wProp.

(******************************************************************************)
(* Lemma and tactic assume_not: add a goal negation assumption. The tactic *)
Expand All @@ -758,7 +825,8 @@ Import Internals.

Lemma assume_not {P} : (~ P -> P) -> P. Proof. by rewrite implyNp orB. Qed.
Ltac assume_not :=
apply Internals.push_goal_copy; apply: Internals.assume_not_with => /lax_notP-/lax_witness.
apply: Internals.push_goal_copy; apply: Internals.assume_not_with
=> /Internals.lax_notP-/Internals.lax_witness.

(******************************************************************************)
(* Lemma and tactic absurd_not: proof by contradiction. Same as assume_not, *)
Expand All @@ -783,7 +851,9 @@ Ltac absurd_not := assume_not; apply: Internals.absurdW.
(* switch. *)
(******************************************************************************)

Ltac contrapose := apply: Internals.contra_Type; apply: contra_notP => /lax_witness.
Ltac contrapose :=
apply: Internals.contra_Type;
apply: contra_notP => /lax_witness.
Tactic Notation "contra" := contrapose.
Tactic Notation "contra" ":" constr(H) := move: (H); contra.
Tactic Notation "contra" ":" ident(H) := move: H; contra.
Expand Down

0 comments on commit e1626e7

Please sign in to comment.