Skip to content

Commit

Permalink
simplify proof script, %type in notations
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist authored and proux01 committed Aug 31, 2023
1 parent 2a479b4 commit e1d959c
Show file tree
Hide file tree
Showing 3 changed files with 21 additions and 21 deletions.
24 changes: 12 additions & 12 deletions theories/kernel.v
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ HB.mixin Record isKernel d d' (X : measurableType d) (Y : measurableType d')
HB.structure Definition Kernel d d'
(X : measurableType d) (Y : measurableType d') (R : realType) :=
{ k & isKernel _ _ X Y R k }.
Notation "R .-ker X ~> Y" := (kernel X Y R).
Notation "R .-ker X ~> Y" := (kernel X%type Y R).

Arguments measurable_kernel {_ _ _ _ _} _.

Expand Down Expand Up @@ -177,7 +177,7 @@ HB.structure Definition SFiniteKernel d d'
(X : measurableType d) (Y : measurableType d') (R : realType) :=
{ k of @Kernel _ _ _ _ R k &
Kernel_isSFinite_subdef _ _ X Y R k }.
Notation "R .-sfker X ~> Y" := (SFiniteKernel.type X Y R).
Notation "R .-sfker X ~> Y" := (SFiniteKernel.type X%type Y R).
Arguments sfinite_kernel_subdef {_ _ _ _ _} _.

Lemma eq_sfkernel d d' (T : measurableType d) (T' : measurableType d')
Expand All @@ -200,7 +200,7 @@ HB.structure Definition FiniteKernel d d'
(X : measurableType d) (Y : measurableType d') (R : realType) :=
{ k of @SFiniteKernel _ _ _ _ _ k &
SFiniteKernel_isFinite _ _ X Y R k }.
Notation "R .-fker X ~> Y" := (finite_kernel X Y R).
Notation "R .-fker X ~> Y" := (finite_kernel X%type Y R).
Arguments measure_uub {_ _ _ _ _} _.

HB.factory Record Kernel_isFinite d d'
Expand Down Expand Up @@ -356,7 +356,7 @@ HB.structure Definition SubProbabilityKernel
d d' (X : measurableType d) (Y : measurableType d') (R : realType) :=
{ k of @FiniteKernel _ _ _ _ _ k &
FiniteKernel_isSubProbability _ _ X Y R k }.
Notation "R .-spker X ~> Y" := (sprobability_kernel X Y R).
Notation "R .-spker X ~> Y" := (sprobability_kernel X%type Y R).

HB.factory Record Kernel_isSubProbability d d'
(X : measurableType d) (Y : measurableType d') (R : realType)
Expand Down Expand Up @@ -389,7 +389,7 @@ HB.structure Definition ProbabilityKernel d d'
(X : measurableType d) (Y : measurableType d') (R : realType) :=
{ k of @SubProbabilityKernel _ _ _ _ _ k &
SubProbability_isProbability _ _ X Y R k }.
Notation "R .-pker X ~> Y" := (probability_kernel X Y R).
Notation "R .-pker X ~> Y" := (probability_kernel X%type Y R).

HB.factory Record Kernel_isProbability d d'
(X : measurableType d) (Y : measurableType d') (R : realType)
Expand Down Expand Up @@ -507,7 +507,7 @@ Variable k : X * Y -> \bar R.

Lemma measurable_fun_xsection_integral
(l : X -> {measure set Y -> \bar R})
(k_ : ({nnsfun [the measurableType _ of (X * Y)%type] >-> R})^nat)
(k_ : ({nnsfun [the measurableType _ of X * Y] >-> R})^nat)
(ndk_ : nondecreasing_seq (k_ : (X * Y -> R)^nat))
(k_k : forall z, EFin \o (k_ ^~ z) --> k z) :
(forall n r,
Expand Down Expand Up @@ -847,7 +847,7 @@ Section kcomp_is_measure.
Context d1 d2 d3 (X : measurableType d1) (Y : measurableType d2)
(Z : measurableType d3) (R : realType).
Variable l : R.-ker X ~> Y.
Variable k : R.-ker [the measurableType _ of (X * Y)%type] ~> Z.
Variable k : R.-ker [the measurableType _ of X * Y] ~> Z.

Local Notation "l \; k" := (kcomp l k).

Expand Down Expand Up @@ -885,7 +885,7 @@ Module KCOMP_FINITE_KERNEL.
Section kcomp_finite_kernel_kernel.
Context d d' d3 (X : measurableType d) (Y : measurableType d')
(Z : measurableType d3) (R : realType) (l : R.-fker X ~> Y)
(k : R.-ker [the measurableType _ of (X * Y)%type] ~> Z).
(k : R.-ker [the measurableType _ of X * Y] ~> Z).

Lemma measurable_fun_kcomp_finite U :
measurable U -> measurable_fun [set: X] ((l \; k) ^~ U).
Expand All @@ -903,7 +903,7 @@ Section kcomp_finite_kernel_finite.
Context d d' d3 (X : measurableType d) (Y : measurableType d')
(Z : measurableType d3) (R : realType).
Variable l : R.-fker X ~> Y.
Variable k : R.-fker [the measurableType _ of (X * Y)%type] ~> Z.
Variable k : R.-fker [the measurableType _ of X * Y] ~> Z.

Let mkcomp_finite : measure_fam_uub (l \; k).
Proof.
Expand All @@ -927,7 +927,7 @@ Section kcomp_sfinite_kernel.
Context d d' d3 (X : measurableType d) (Y : measurableType d')
(Z : measurableType d3) (R : realType).
Variable l : R.-sfker X ~> Y.
Variable k : R.-sfker [the measurableType _ of (X * Y)%type] ~> Z.
Variable k : R.-sfker [the measurableType _ of X * Y] ~> Z.

Import KCOMP_FINITE_KERNEL.

Expand Down Expand Up @@ -973,7 +973,7 @@ Section kcomp_sfinite_kernel.
Context d d' d3 (X : measurableType d) (Y : measurableType d')
(Z : measurableType d3) (R : realType).
Variable l : R.-sfker X ~> Y.
Variable k : R.-sfker [the measurableType _ of (X * Y)%type] ~> Z.
Variable k : R.-sfker [the measurableType _ of X * Y] ~> Z.

HB.instance Definition _ :=
isKernel.Build _ _ X Z R (l \; k) (measurable_fun_mkcomp_sfinite l k).
Expand Down Expand Up @@ -1047,7 +1047,7 @@ Section integral_kcomp.
Context d d2 d3 (X : measurableType d) (Y : measurableType d2)
(Z : measurableType d3) (R : realType).
Variables (l : R.-sfker X ~> Y)
(k : R.-sfker [the measurableType _ of (X * Y)%type] ~> Z).
(k : R.-sfker [the measurableType _ of X * Y] ~> Z).

Let integral_kcomp_indic x E (mE : measurable E) :
\int[(l \; k) x]_z (\1_E z)%:E = \int[l x]_y (\int[k (x, y)]_z (\1_E z)%:E).
Expand Down
4 changes: 2 additions & 2 deletions theories/lebesgue_integral.v
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,7 @@ Reserved Notation "{ 'nnsfun' aT >-> T }"
(at level 0, format "{ 'nnsfun' aT >-> T }").
Reserved Notation "[ 'nnsfun' 'of' f ]"
(at level 0, format "[ 'nnsfun' 'of' f ]").
Notation "{ 'nnsfun' aT >-> T }" := (@NonNegSimpleFun.type _ aT T) : form_scope.
Notation "{ 'nnsfun' aT >-> T }" := (@NonNegSimpleFun.type _ aT%type T) : form_scope.
Notation "[ 'nnsfun' 'of' f ]" := [the {nnsfun _ >-> _} of f] : form_scope.

Section mfun_pred.
Expand Down Expand Up @@ -4658,7 +4658,7 @@ Variable m1 : {sigma_finite_measure set T1 -> \bar R}.
Variable m2 : {sigma_finite_measure set T2 -> \bar R}.

Lemma product_measure_unique
(m' : {measure set [the semiRingOfSetsType _ of (T1 * T2)%type] -> \bar R}) :
(m' : {measure set [the semiRingOfSetsType _ of T1 * T2] -> \bar R}) :
(forall A1 A2, measurable A1 -> measurable A2 ->
m' (A1 `*` A2) = m1 A1 * m2 A2) ->
forall X : set (T1 * T2), measurable X -> (m1 \x m2) X = m' X.
Expand Down
14 changes: 7 additions & 7 deletions theories/measure.v
Original file line number Diff line number Diff line change
Expand Up @@ -1135,13 +1135,13 @@ Lemma measurable_fun_if (g h : T1 -> T2) D (mD : measurable D)
measurable_fun D (fun t => if f t then g t else h t).
Proof.
move=> mx my /= _ B mB; rewrite (_ : _ @^-1` B =
((f @^-1` [set true]) `&` (g @^-1` B) `&` (f @^-1` [set true])) `|`
((f @^-1` [set false]) `&` (h @^-1` B) `&` (f @^-1` [set false]))).
((f @^-1` [set true]) `&` (g @^-1` B)) `|`
((f @^-1` [set false]) `&` (h @^-1` B))).
rewrite setIUr; apply: measurableU.
- by rewrite setIAC setIid setIA; apply: mx => //; exact: mf.
- by rewrite setIAC setIid setIA; apply: my => //; exact: mf.
apply/seteqP; split=> [t /=| t]; first by case: ifPn => ft; [left|right].
by move=> /= [|]; case: ifPn => ft; case=> -[].
- by rewrite setIA; apply: mx => //; exact: mf.
- by rewrite setIA; apply: my => //; exact: mf.
apply/seteqP; split=> [t /=| t /= [] [] ->//].
by case: ifPn => ft; [left|right].
Qed.

Lemma measurable_fun_ifT (g h : T1 -> T2) (f : T1 -> bool)
Expand Down Expand Up @@ -1560,7 +1560,7 @@ HB.structure Definition Measure d (T : semiRingOfSetsType d)
(R : numFieldType) :=
{mu of Content_isMeasure d T R mu & Content d mu}.

Notation "{ 'measure' 'set' T '->' '\bar' R }" := (measure T R)
Notation "{ 'measure' 'set' T '->' '\bar' R }" := (measure T%type R)
(at level 36, T, R at next level,
format "{ 'measure' 'set' T '->' '\bar' R }") : ring_scope.

Expand Down

0 comments on commit e1d959c

Please sign in to comment.