Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ae_eq lemmas #1110

Merged
merged 3 commits into from
Dec 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 18 additions & 1 deletion CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,12 +53,29 @@
`lower_semicontinuous_HL_maximal`, `measurable_HL_maximal`,
`maximal_inequality`

- in file `measure.v`
+ add lemmas `ae_eq_subset`, `measure_dominates_ae_eq`.

### Changed

- in `normedtype.v`:
+ lemmas `vitali_lemma_finite` and `vitali_lemma_finite_cover` now returns
duplicate-free lists of indices


- moved from `lebesgue_integral.v` to `measure.v`:
+ definition `ae_eq`
+ lemmas
`ae_eq0`,
`ae_eq_comp`,
`ae_eq_funeposneg`,
`ae_eq_refl`,
`ae_eq_trans`,
`ae_eq_sub`,
`ae_eq_mul2r`,
`ae_eq_mul2l`,
`ae_eq_mul1l`,
`ae_eq_abse`

### Renamed

- in `exp.v`:
Expand Down
51 changes: 1 addition & 50 deletions theories/lebesgue_integral.v
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,6 @@ Require Import esum measure lebesgue_measure numfun.
(* Rintegral mu D f := fine (\int[mu]_(x in D) f x). *)
(* mu.-integrable D f == f is measurable over D and the integral of f *)
(* w.r.t. D is < +oo *)
(* ae_eq D f g == f is equal to g almost everywhere *)
(* m1 \x m2 == product measure over T1 * T2, m1 is a measure *)
(* measure over T1, and m2 is a sigma finite *)
(* measure over T2 *)
Expand Down Expand Up @@ -3440,54 +3439,6 @@ Proof. by rewrite -integral_setI_indic// setIid. Qed.

End integral_indic.

Section ae_eq.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T).
Implicit Types f g h i : T -> \bar R.

Definition ae_eq f g := {ae mu, forall x, D x -> f x = g x}.

Lemma ae_eq0 f g : measurable D -> mu D = 0 -> ae_eq f g.
Proof. by move=> mD D0; exists D; split => // t/= /not_implyP[]. Qed.

Lemma ae_eq_comp (j : \bar R -> \bar R) f g :
ae_eq f g -> ae_eq (j \o f) (j \o g).
Proof. by apply: filterS => x /[apply] /= ->. Qed.

Lemma ae_eq_funeposneg f g : ae_eq f g <-> ae_eq f^\+ g^\+ /\ ae_eq f^\- g^\-.
Proof.
split=> [fg|[]].
by rewrite /funepos /funeneg; split; apply: filterS fg => x /[apply] ->.
apply: filterS2 => x + + Dx => /(_ Dx) fg /(_ Dx) gf.
by rewrite (funeposneg f) (funeposneg g) fg gf.
Qed.

Lemma ae_eq_refl f : ae_eq f f. Proof. exact/aeW. Qed.

Lemma ae_eq_sym f g : ae_eq f g -> ae_eq g f.
Proof. by apply: filterS => x + Dx => /(_ Dx). Qed.

Lemma ae_eq_trans f g h : ae_eq f g -> ae_eq g h -> ae_eq f h.
Proof. by apply: filterS2 => x + + Dx => /(_ Dx) ->; exact. Qed.

Lemma ae_eq_sub f g h i : ae_eq f g -> ae_eq h i -> ae_eq (f \- h) (g \- i).
Proof. by apply: filterS2 => x + + Dx => /(_ Dx) -> /(_ Dx) ->. Qed.

Lemma ae_eq_mul2r f g h : ae_eq f g -> ae_eq (f \* h) (g \* h).
Proof. by apply: filterS => x /[apply] ->. Qed.

Lemma ae_eq_mul2l f g h : ae_eq f g -> ae_eq (h \* f) (h \* g).
Proof. by apply: filterS => x /[apply] ->. Qed.

Lemma ae_eq_mul1l f g : ae_eq f (cst 1) -> ae_eq g (g \* f).
Proof. by apply: filterS => x /[apply] ->; rewrite mule1. Qed.

Lemma ae_eq_abse f g : ae_eq f g -> ae_eq (abse \o f) (abse \o g).
Proof. by apply: filterS => x /[apply] /= ->. Qed.

End ae_eq.

Section ae_eq_integral.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType)
Expand Down Expand Up @@ -3710,7 +3661,7 @@ Qed.
Lemma ge0_ae_eq_integral (D : set T) (f g : T -> \bar R) :
measurable D -> measurable_fun D f -> measurable_fun D g ->
(forall x, D x -> 0 <= f x) -> (forall x, D x -> 0 <= g x) ->
ae_eq D f g -> \int[mu]_(x in D) (f x) = \int[mu]_(x in D) (g x).
ae_eq D f g -> \int[mu]_(x in D) (f x) = \int[mu]_(x in D) (g x).
Proof.
move=> mD mf mg f0 g0 [N [mN N0 subN]].
rewrite integralEindic// [RHS]integralEindic//.
Expand Down
75 changes: 72 additions & 3 deletions theories/measure.v
Original file line number Diff line number Diff line change
Expand Up @@ -195,6 +195,7 @@ From HB Require Import structures.
(* measure_is_complete mu == the measure mu is complete *)
(* {ae mu, forall x, P x} == P holds almost everywhere for the measure mu, *)
(* declared as an instance of the type of filters *)
(* ae_eq D f g == f is equal to g almost everywhere *)
(* *)
(* * From a premeasure to an outer measure (Measure Extension Theorem part 1) *)
(* measurable_cover X == the set of sequences F such that *)
Expand Down Expand Up @@ -3385,6 +3386,66 @@ move=> aP; have -> : P = setT by rewrite predeqE => t; split.
by apply/negligibleP; [rewrite setCT|rewrite setCT measure0].
Qed.

Section ae_eq.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T).
Implicit Types f g h i : T -> \bar R.

Definition ae_eq f g := {ae mu, forall x, D x -> f x = g x}.

Lemma ae_eq0 f g : measurable D -> mu D = 0 -> ae_eq f g.
Proof. by move=> mD D0; exists D; split => // t/= /not_implyP[]. Qed.

Lemma ae_eq_comp (j : \bar R -> \bar R) f g :
ae_eq f g -> ae_eq (j \o f) (j \o g).
Proof. by apply: filterS => x /[apply] /= ->. Qed.

Lemma ae_eq_funeposneg f g : ae_eq f g <-> ae_eq f^\+ g^\+ /\ ae_eq f^\- g^\-.
Proof.
split=> [fg|[]].
by rewrite /funepos /funeneg; split; apply: filterS fg => x /[apply] ->.
apply: filterS2 => x + + Dx => /(_ Dx) fg /(_ Dx) gf.
by rewrite (funeposneg f) (funeposneg g) fg gf.
Qed.

Lemma ae_eq_refl f : ae_eq f f. Proof. exact/aeW. Qed.

Lemma ae_eq_sym f g : ae_eq f g -> ae_eq g f.
Proof. by apply: filterS => x + Dx => /(_ Dx). Qed.

Lemma ae_eq_trans f g h : ae_eq f g -> ae_eq g h -> ae_eq f h.
Proof. by apply: filterS2 => x + + Dx => /(_ Dx) ->; exact. Qed.

Lemma ae_eq_sub f g h i : ae_eq f g -> ae_eq h i -> ae_eq (f \- h) (g \- i).
Proof. by apply: filterS2 => x + + Dx => /(_ Dx) -> /(_ Dx) ->. Qed.

Lemma ae_eq_mul2r f g h : ae_eq f g -> ae_eq (f \* h) (g \* h).
Proof. by apply: filterS => x /[apply] ->. Qed.

Lemma ae_eq_mul2l f g h : ae_eq f g -> ae_eq (h \* f) (h \* g).
Proof. by apply: filterS => x /[apply] ->. Qed.

Lemma ae_eq_mul1l f g : ae_eq f (cst 1) -> ae_eq g (g \* f).
Proof. by apply: filterS => x /[apply] ->; rewrite mule1. Qed.

Lemma ae_eq_abse f g : ae_eq f g -> ae_eq (abse \o f) (abse \o g).
Proof. by apply: filterS => x /[apply] /= ->. Qed.

End ae_eq.

Section ae_eq_lemmas.
Context d (T : measurableType d) (R : realType).
Implicit Types mu : {measure set T -> \bar R}.

Lemma ae_eq_subset mu A B f g : B `<=` A -> ae_eq mu A f g -> ae_eq mu B f g.
Proof.
move=> BA [N [mN N0 fg]]; exists N; split => //.
by apply: subset_trans fg; apply: subsetC => z /= /[swap] /BA ? ->.
Qed.

End ae_eq_lemmas.

Definition sigma_subadditive {T} {R : numFieldType}
(mu : set T -> \bar R) := forall (F : (set T) ^nat),
mu (\bigcup_n (F n)) <= \sum_(i <oo) mu (F i).
Expand Down Expand Up @@ -4437,13 +4498,21 @@ Implicit Types m : set T -> \bar R.
Definition measure_dominates m1 m2 :=
forall A, measurable A -> m2 A = 0 -> m1 A = 0.

Local Notation "m1 `<< m2" := (measure_dominates m1 m2).
End absolute_continuity.
Notation "m1 `<< m2" := (measure_dominates m1 m2).

Section absolute_continuity_lemmas.
Context d (T : measurableType d) (R : realType).
Implicit Types m : {measure set T -> \bar R}.

Lemma measure_dominates_trans m1 m2 m3 : m1 `<< m2 -> m2 `<< m3 -> m1 `<< m3.
Proof. by move=> m12 m23 A mA /m23-/(_ mA) /m12; exact. Qed.

End absolute_continuity.
Notation "m1 `<< m2" := (measure_dominates m1 m2).
Lemma measure_dominates_ae_eq m1 m2 f g E : measurable E ->
m2 `<< m1 -> ae_eq m1 E f g -> ae_eq m2 E f g.
Proof. by move=> mE m21 [A [mA A0 ?]]; exists A; split => //; exact: m21. Qed.

End absolute_continuity_lemmas.

Section essential_supremum.
Context d {T : measurableType d} {R : realType}.
Expand Down
Loading