Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Changelog130 #1282

Merged
merged 3 commits into from
Aug 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
284 changes: 283 additions & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,288 @@
# Changelog

Latest releases: [[1.2.0] - 2024-06-06](#120---2024-06-06) and [[1.1.0] - 2024-03-31](#110---2024-03-31)
Latest releases: [[1.3.0] - 2024-08-06](#130---2024-08-06) and [[1.2.0] - 2024-06-06](#120---2024-06-06)

## [1.3.0] - 2024-08-06

### Added

- in `mathcomp_extra.v`:
+ lemma `ge_floor`
+ lemmas `intr1D`, `intrD1`, `floor_eq`, `floorN`
+ lemma `invf_ltp`

- new file `wochoice.v`:
+ definition `prop_within`
+ lemmas `withinW`, `withinT`, `sub_within`
+ notation `{in <= _, _}`
+ definitions `maximal`, `minimal`, `upper_bound`, `lower_bound`, `preorder`, `partial_order`,
`total_order`, `nonempty`, `minimum_of`, `maximum_of`, `well_order`, `chain`, `wo_chain`
+ lemmas `antisymmetric_wo_chain`, `antisymmetric_well_order`, `wo_chainW`, `wo_chain_reflexive`,
`wo_chain_antisymmetric`, `Zorn's_lemma`, `Hausdorff_maximal_principle`, `well_ordering_principle`

- in `classical_sets.v`:
+ lemma `setCD`
+ definition `setY`, notation ``` `+` ```
+ lemmas `setY0`, `set0Y`, `setYK`, `setYC`, `setYA`, `setIYl`, `mulrYr`,
`setY_def`, `setYE`, `setYU`, `setYI`, `setYD`, `setYCT`, `setCYT`, `setYTC`, `setTYC`
+ lemma `setDU`
+ lemmas `setC_I`, `bigcup_subset`
+ lemmas `xsectionP`, `ysectionP`

- in `constructive_ereal.v`:
+ lemmas `lteD2rE`, `leeD2rE`
+ lemmas `lte_dD2rE`, `lee_dD2rE`

- in `reals.v`:
+ lemma `mem_rg1_floor`

- in `set_interval.v`:
+ lemmas `subset_itvl`, `subset_itvr`, `subset_itvS`
+ lemma `interval_set1`

- in `topology.v`:
+ lemma `ball_subspace_ball`

- in `ereal.v`:
+ lemmas `restrict_EFin`

- in `normedtype.v`:
+ lemmas `nbhs_lt`, `nbhs_le`
+ lemma `nbhs_right_ltDr`

- in `numfun.v`:
+ lemma `epatch_indic`
+ lemma `restrict_normr`
+ lemmas `funepos_le`, `funeneg_le`

- in `realfun.v`:
+ lemma `nondecreasing_at_left_is_cvgr`
+ lemmas `nondecreasing_at_left_at_right`, `nonincreasing_at_left_at_right`

- in `measure.v`:
+ factory `isAlgebraOfSets_setD`
+ defintion `setY_closed`
+ factory `isRingOfSets_setY`
+ definition `completed_measure_extension`
+ lemma `completed_measure_extension_sigma_finite`
+ definition `lim_sup_set`
+ lemmas `lim_sup_set_ub`, `lim_sup_set_cvg`, `lim_sup_set_cvg0`

- in `lebesgue_stieltjes_measure.v`:
+ definition `completed_lebesgue_stieltjes_measure`

- in `lebesgue_measure.v`:
+ definition `completed_lebesgue_measure`
+ lemma `completed_lebesgue_measure_is_complete`
+ definition `completed_algebra_gen`
+ lemmas `g_sigma_completed_algebra_genE`, `negligible_sub_caratheodory`,
`completed_caratheodory_measurable`

- in `lebesgue_integral.v`:
+ lemmas `eq_Rintegral`, `Rintegral_mkcond`, `Rintegral_mkcondr`, `Rintegral_mkcondl`,
`le_normr_integral`, `Rintegral_setU_EFin`, `Rintegral_set0`, `Rintegral_itv_bndo_bndc`,
`Rintegral_itv_obnd_cbnd`, `Rintegral_set1`, `Rintegral_itvB`
+ lemma `integral_Sset1`
+ lemma `integralEpatch`
+ lemma `integrable_restrict`
+ lemma `le_integral`
+ lemma `null_set_integral`
+ lemma `EFin_normr_Rintegral`

- in `charge.v`:
+ definition `charge_variation`
+ lemmas `abse_charge_variation`, `charge_variation_continuous`
+ definition `induced`
+ lemmas `semi_sigma_additive_nng_induced`, `dominates_induced`, `integral_normr_continuous`

- in `ftc.v`:
+ lemma `FTC1` (specialization of the previous `FTC1` lemma, now renamed to `FTC1_lebesgue_pt`)
+ lemma `FTC1Ny`
+ definition `parameterized_integral`
+ lemmas `parameterized_integral_near_left`,
`parameterized_integral_left`, `parameterized_integral_cvg_at_left`,
`parameterized_integral_continuous`
+ corollary `continuous_FTC2`

### Changed

- in `mathcomp_extra.v`:
+ Notation "f \^-1" now at level 35 with f at next level

- in `classical_sets.v`:
+ lemmas `Zorn` and `ZL_preorder` now require a relation of type `rel T` instead of `T -> T -> Prop`

- moved from `reals.v` to `mathcomp_extra.v`
+ lemma `lt_succ_floor`: conclusion changed to match `lt_succ_floor` in MathComp,
generalized to `archiDomainType`
+ generalized to `archiDomainType`:
lemmas `floor_ge0`, `floor_lt0`, `floor_natz`,
`floor_ge_int`, `floor_neq0`, `floor_lt_int`, `ceil_ge`, `ceil_ge0`, `ceil_gt0`,
`ceil_le0`, `ceil_ge_int`, `ceilN`, `abs_ceil_ge`
+ generalized to `archiDomainType` and precondition generalized:
* `floor_le0`
+ generalized to `archiDomainType` and renamed:
* `ceil_lt_int` -> `ceil_gt_int`

- in `reals.v`:
+ definitions `Rceil`, `Rfloor`

- in `topology.v`:
+ lemmas `subspace_pm_ball_center`, `subspace_pm_ball_sym`,
`subspace_pm_ball_triangle`, `subspace_pm_entourage` turned
into local `Let`'s

- in `lebesgue_integral.v`:
+ lemma `measurable_int`: argument `mu` now explicit

- moved from `lebesgue_integral.v` to `ereal.v`:
+ lemma `funID`

- moved from `lebesgue_integral.v` to `numfun.v`:
+ lemmas `fimfunEord`, `fset_set_comp`

- moved from `lebesgue_integral.v` to `cardinality.v`:
+ hint `solve [apply: fimfunP]`

### Renamed

- in `constructive_ereal.v`:
+ `lte_pdivr_mull` -> `lte_pdivrMl`
+ `lte_pdivr_mulr` -> `lte_pdivrMr`
+ `lte_pdivl_mull` -> `lte_pdivlMl`
+ `lte_pdivl_mulr` -> `lte_pdivlMr`
+ `lte_ndivl_mulr` -> `lte_ndivlMr`
+ `lte_ndivl_mull` -> `lte_ndivlMl`
+ `lte_ndivr_mull` -> `lte_ndivrMl`
+ `lte_ndivr_mulr` -> `lte_ndivrMr`
+ `lee_pdivr_mull` -> `lee_pdivrMl`
+ `lee_pdivr_mulr` -> `lee_pdivrMr`
+ `lee_pdivl_mull` -> `lee_pdivlMl`
+ `lee_pdivl_mulr` -> `lee_pdivlMr`
+ `lee_ndivl_mulr` -> `lee_ndivlMr`
+ `lee_ndivl_mull` -> `lee_ndivlMl`
+ `lee_ndivr_mull` -> `lee_ndivrMl`
+ `lee_ndivr_mulr` -> `lee_ndivrMr`
+ `eqe_pdivr_mull` -> `eqe_pdivrMl`
+ `lte_dadd` -> `lte_dD`
+ `lee_daddl` -> `lee_dDl`
+ `lee_daddr` -> `lee_dDr`
+ `gee_daddl` -> `gee_dDl`
+ `gee_daddr` -> `gee_dDr`
+ `lte_daddl` -> `lte_dDl`
+ `lte_daddr` -> `lte_dDr`
+ `gte_dsubl` -> `gte_dBl`
+ `gte_dsubr` -> `gte_dBr`
+ `gte_daddl` -> `gte_dDl`
+ `gte_daddr` -> `gte_dDr`
+ `lee_dadd2lE` -> `lee_dD2lE`
+ `lte_dadd2lE` -> `lte_dD2lE`
+ `lee_dadd2rE` -> `lee_dD2rE`
+ `lee_dadd2l` -> `lee_dD2l`
+ `lee_dadd2r` -> `lee_dD2r`
+ `lee_dadd` -> `lee_dD`
+ `lee_dsub` -> `lee_dB`
+ `lte_dsubl_addr` -> `lte_dBlDr`
+ `lte_dsubl_addl` -> `lte_dBlDl`
+ `lte_dsubr_addr` -> `lte_dBrDr`
+ `lte_dsubr_addl` -> `lte_dBrDl`
+ `gte_opp` -> `gteN`
+ `gte_dopp` -> `gte_dN`
+ `lte_le_add` -> `lte_leD`
+ `lee_lt_add` -> `lee_ltD`
+ `lte_le_dadd` -> `lte_le_dD`
+ `lee_lt_dadd` -> `lee_lt_dD`
+ `lte_le_sub` -> `lte_leB`
+ `lte_le_dsub` -> `lte_le_dB`

- in `classical_sets.v`:
+ `setM` -> `setX`
+ `in_setM` -> `in_setX`
+ `setMR` -> `setXR`
+ `setML` -> `setXL`
+ `setM0` -> `setX0`
+ `set0M` -> `set0X`
+ `setMTT` -> `setXTT`
+ `setMT` -> `setXT`
+ `setTM` -> `setTX`
+ `setMI` -> `setXI`
+ `setM_bigcupr` -> `setX_bigcupr`
+ `setM_bigcupl` -> `setX_bigcupl`
+ `bigcup_setM_dep` -> `bigcup_setX_dep`
+ `bigcup_setM` -> `bigcup_setX`
+ `fst_setM` -> `fst_setX`
+ `snd_setM` -> `snd_setX`
+ `in_xsectionM` -> `in_xsectionX`
+ `in_ysectionM` -> `in_ysectionX`
+ `notin_xsectionM` -> `notin_xsectionX`
+ `notin_ysectionM` -> `notin_ysectionX`
+ `setSM` -> `setSX`
+ `bigcupM1l` -> `bigcupX1l`
+ `bigcupM1r` -> `bigcupX1r`

- in `cardinality.v`:
+ `countableMR` -> `countableXR`
+ `countableM` -> `countableX`
+ `countableML` -> `countableXL`
+ `infiniteMRl` -> `infiniteXRl`
+ `cardMR_eq_nat` -> `cardXR_eq_nat`
+ `finite_setM` -> `finite_setX`
+ `finite_setMR` -> `finite_setXR`
+ `finite_setML` -> `finite_setXL`
+ `fset_setM` -> `fset_setX`

- in `reals.v`:
+ `inf_lb` -> `inf_lbound`
+ `sup_ub` -> `sup_ubound`
+ `ereal_inf_lb` -> `ereal_inf_lbound`
+ `ereal_sup_ub` -> `ereal_sup_ubound`

- in `topology.v`:
+ `compact_setM` -> `compact_setX`

- in `measure.v`:
+ `measurable_restrict` -> `measurable_restrictT`
+ `setD_closed` -> `setSD_closed`
+ `measurableM` -> `measurableX`

- in `ftc.v`:
+ `FTC1` -> `FTC1_lebesgue_pt`

### Generalized

- in `constructive_ereal.v`:
+ lemmas `leeN2`, `lteN2` generalized from `realDomainType` to `numDomainType`

- in `measure.v`:
+ lemma `measurable_restrict`

### Deprecated

- in `constructive_ereal.v`:
+ lemmas `lte_opp2`, `lee_opp2` (use `lteN2`, `leeN2` instead)

- in `reals.v`:
+ `floor_le` (use `ge_floor` instead)
+ `le_floor` (use `Num.Theory.floor_le` instead)
+ `le_ceil` (use `ceil_ge` instead)

- in `lebesgue_integral.v`:
+ lemmas `integralEindic`, `integral_setI_indic`

### Removed

- in `classical_sets.v`:
+ inductive `tower`
+ lemma `ZL'`

- in `reals.v`:
+ definition `floor` (use `Num.floor` instead)
+ definition `ceil` (use `Num.ceil` instead)
+ lemmas `floor0`, `floor1`
+ lemma `le_floor` (use `Num.Theory.floor_le` instead)

- in `topology.v`, `function_spaces.v`, `normedtype.v`:
+ local notation `to_set`

## [1.2.0] - 2024-06-06

Expand Down
Loading
Loading