Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

prod notation for ereal and lemmas #1418

Merged
merged 2 commits into from
Dec 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,10 @@
- in `mathcomp_extra.v`:
+ lemma `partition_disjoint_bigfcup`

- in `constructive_ereal.v`:
+ notations `\prod` in scope ereal_scope
+ lemmas `prode_ge0`, `prode_fin_num`

### Changed

### Renamed
Expand Down
35 changes: 35 additions & 0 deletions reals/constructive_ereal.v
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ From mathcomp Require Import mathcomp_extra signed.
(* (_ <= _)%E, (_ < _)%E, == comparison relations for extended reals *)
(* (_ >= _)%E, (_ > _)%E *)
(* (\sum_(i in A) f i)%E == bigop-like notation in scope %E *)
(* (\prod_(i in A) f i)%E == bigop-like notation in scope %E *)
(* maxe x y, mine x y == notation for the maximum/minimum of two *)
(* extended real numbers *)
(* ``` *)
Expand Down Expand Up @@ -551,6 +552,31 @@ Notation "\sum_ ( i 'in' A ) F" :=
Notation "\sum_ ( i 'in' A ) F" :=
(\big[+%E/0%E]_(i in A) F%E) : ereal_scope.

Notation "\prod_ ( i <- r | P ) F" :=
(\big[*%E/1%:E]_(i <- r | P%B) F%E) : ereal_scope.
Notation "\prod_ ( i <- r ) F" :=
(\big[*%E/1%:E]_(i <- r) F%E) : ereal_scope.
Notation "\prod_ ( m <= i < n | P ) F" :=
(\big[*%E/1%:E]_(m <= i < n | P%B) F%E) : ereal_scope.
Notation "\prod_ ( m <= i < n ) F" :=
(\big[*%E/1%:E]_(m <= i < n) F%E) : ereal_scope.
Notation "\prod_ ( i | P ) F" :=
(\big[*%E/1%:E]_(i | P%B) F%E) : ereal_scope.
Notation "\prod_ i F" :=
(\big[*%E/1%:E]_i F%E) : ereal_scope.
Notation "\prod_ ( i : t | P ) F" :=
(\big[*%E/1%:E]_(i : t | P%B) F%E) (only parsing) : ereal_scope.
Notation "\prod_ ( i : t ) F" :=
(\big[*%E/1%:E]_(i : t) F%E) (only parsing) : ereal_scope.
Notation "\prod_ ( i < n | P ) F" :=
(\big[*%E/1%:E]_(i < n | P%B) F%E) : ereal_scope.
Notation "\prod_ ( i < n ) F" :=
(\big[*%E/1%:E]_(i < n) F%E) : ereal_scope.
Notation "\prod_ ( i 'in' A | P ) F" :=
(\big[*%E/1%:E]_(i in A | P%B) F%E) : ereal_scope.
Notation "\prod_ ( i 'in' A ) F" :=
(\big[*%E/1%:E]_(i in A) F%E) : ereal_scope.

Section ERealOrderTheory.
Context {R : numDomainType}.
Implicit Types x y z : \bar R.
Expand Down Expand Up @@ -928,6 +954,11 @@ Lemma fin_numM x y : x \is a fin_num -> y \is a fin_num ->
x * y \is a fin_num.
Proof. by move: x y => [x| |] [y| |]. Qed.

Lemma prode_fin_num (I : Type) (s : seq I) (P : pred I) (f : I -> \bar R) :
(forall i, P i -> f i \is a fin_num) ->
\prod_(i <- s | P i) f i \is a fin_num.
Proof. by move=> ffin; elim/big_ind : _ => // x y x0 y0; rewrite fin_numM. Qed.

Lemma fin_numX x n : x \is a fin_num -> x ^+ n \is a fin_num.
Proof. by elim: n x => // n ih x finx; rewrite expeS fin_numM// ih. Qed.

Expand Down Expand Up @@ -1164,6 +1195,10 @@ move: x y => [x||] [y||]//=; rewrite /mule/= ?(lee_fin, eqe, lte_fin, lt0y)//.
by rewrite gt_eqF // y0 le0y.
Qed.

Lemma prode_ge0 (I : Type) (s : seq I) (P : pred I) (f : I -> \bar R) :
(forall i, P i -> 0 <= f i) -> 0 <= \prod_(i <- s | P i) f i.
Proof. by move=> f0; elim/big_ind : _ => // x y x0 y0; rewrite mule_ge0. Qed.

Lemma mule_gt0 x y : 0 < x -> 0 < y -> 0 < x * y.
Proof.
by rewrite !lt_def => /andP[? ?] /andP[? ?]; rewrite mule_neq0 ?mule_ge0.
Expand Down
Loading