Skip to content

mdagost/pug_classifier

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Docker and Deep Learning for Pugs pug

Repo for the Strata+Hadoop World 2016 talk "Docker for Data Scientists".

Introduction

This repository comprises an end-to-end example of doing data science with docker. We begin by doing interactive analysis and modeling in a jupyter notebook. The task at hand is building a deep convolutional neural network that can recognize photos of pugs vs. photos of golden retrievers with transfer learning. That is, we take a pre-trained deep convolutional network and retrain the last layer for our particular pug-recognition task. Training can take place using docker on a CPU or on a GPU for speed.

Once the model is built and the weights are saved, we deploy a simple web app. We serve model scores with another container running a simple flask API wrapper around the neural network model. And we build a frontend using a container running R and Shiny. Finally, both containers are run and linked together using docker-compose.

The data comes from URL's from ImageNet. The /data directory of the project has the URL's as well as code for downloading them and normalizing the images. There's also a gzipped pickle file stored in Git LFS so the user doesn't need to download all of the original images.

Docker Images

Interactive Notebook and Modeling on the CPU

Work locally, or create an ec2 instance:

docker-machine create --driver amazonec2 --amazonec2-access-key XXXX --amazonec2-secret-key XXXX --amazonec2-root-size 100 --amazonec2-instance-type m3.large awsnotebook

If you want the ec2 instance to be on a private VPN:

docker-machine create --driver amazonec2 --amazonec2-access-key XXXX --amazonec2-secret-key XXXX --amazonec2-root-size 100 --amazonec2-zone b --amazonec2-vpc-id vpc-XXXX --amazonec2-subnet-id subnet-XXXX --amazonec2-instance-type m3.large --amazonec2-private-address-only awsnotebook

Get our software:

git clone https://github.com/mdagost/pug_classifier.git
cd pug_classifier
curl http://pug-classifier.s3.amazonaws.com/cnn_pug_model_architecture.json > api/cnn_pug_model_architecture.json
curl http://pug-classifier.s3.amazonaws.com/cnn_pug_model_weights.h5 > api/cnn_pug_model_weights.h5
curl http://pug-classifier.s3.amazonaws.com/pugs_vs_golden_retrvrs_data.pkl.gz > data/pugs_vs_golden_retrvrs_data.pkl.gz
curl http://pug-classifier.s3.amazonaws.com/vgg16_weights.h5 > model/vgg16_weights.h5

Run the container:

eval $(docker-machine env awsnotebook)
docker run -d -p 8888:8888 -v /home/ubuntu/pug_classifier:/home/jovyan/work mdagost/pug_classifier_notebook

Get the IP of the instance:

docker-machine env awsnotebook

Visit http://{{IP}}:8888/ to use the notebook. Note: if you're using AWS you may have to add an inbound rule to the docker-machine security group opening up port 8888.

Interactive Notebook and Modeling on the GPU

Create a GPU instance:

docker-machine create --driver amazonec2 --amazonec2-access-key XXXX --amazonec2-secret-key XXXX --amazonec2-root-size 100 --amazonec2-instance-type g2.2xlarge --amazonec2-ami ami-76b2a71e awsgpunotebook

If you want the ec2 instance to be on a private VPN:

docker-machine create --driver amazonec2 --amazonec2-access-key XXXX --amazonec2-secret-key XXXX --amazonec2-root-size 100 --amazonec2-zone b --amazonec2-vpc-id vpc-XXXX --amazonec2-subnet-id subnet-XXXX --amazonec2-instance-type g2.2xlarge --amazonec2-private-address-only --amazonec2-ami ami-76b2a71e awsgpunotebook

SSH in:

docker-machine ssh awsgpunotebook

Set up the GPU following the instructions here.

Install nvidia-docker like so:

git clone https://github.com/NVIDIA/nvidia-docker
cd nvidia-docker
sudo make install
sudo nvidia-docker volume setup

Get our software:

git clone https://github.com/mdagost/pug_classifier.git
cd pug_classifier
curl http://pug-classifier.s3.amazonaws.com/cnn_pug_model_architecture.json > api/cnn_pug_model_architecture.json
curl http://pug-classifier.s3.amazonaws.com/cnn_pug_model_weights.h5 > api/cnn_pug_model_weights.h5
curl http://pug-classifier.s3.amazonaws.com/pugs_vs_golden_retrvrs_data.pkl.gz > data/pugs_vs_golden_retrvrs_data.pkl.gz
curl http://pug-classifier.s3.amazonaws.com/vgg16_weights.h5 > model/vgg16_weights.h5

Run the container:

sudo nvidia-docker run -d -p 8888:8888 -v /home/ubuntu/pug_classifier:/home/ubuntu mdagost/pug_classifier_gpu_notebook

Get the IP of the instance:

docker-machine env awsnotebook

Visit http://{{IP}}:8888/ to use the notebook. Note: if you're using AWS you may have to add an inbound rule to the docker-machine security group opening up port 8888.

Shiny App Hitting the Flask API

cd shiny/
docker-compose up

Get the IP of the docker VM:

docker-machine env default

Visit http://{{IP}}:3838/pugs/ and voila!

To run the app on AWS:

docker-machine create --driver amazonec2 --amazonec2-access-key XXXX --amazonec2-secret-key XXXX --amazonec2-root-size 100 --amazonec2-instance-type m3.large awsapp
eval $(docker-machine env awsapp)
cd shiny
docker-compose up

Get the IP of the AWS instance:

docker-machine env awsapp

Visit http://{{IP}}:3838/pugs/ and voila! Note: if you're using AWS you may have to add an inbound rule to the docker-machine security group opening up port 3838.

About

Deep Learning for Pugs

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published