Skip to content

Personal solutions for the 'Reinforcement Learning' course at MIMUW, covering model-free methods, model-based methods, and search-based methods.

Notifications You must be signed in to change notification settings

mihal09/reinforcement-learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Reinforcement Learning @ MIMUW

This repository contains my personal solutions for the "Reinforcement Learning" course at MIMUW. The course focuses on modern reinforcement learning techniques and algorithms, with emphasis on model-free methods, model-based methods, and search-based methods.

Course Topics

  1. Model-Free Methods
    a) Markov Decision Processes (MDP) & Dynamic Programming (DP)
    b) Value-Based Methods
    c) Policy Gradient Methods
    d) Actor-Critic Methods
  2. Model-Based Methods
    a) Model Estimation
    b) Planning
  3. Exploration
    a) Multi-Armed Bandit Models
    b) Search Strategies Related to Uncertainty
  4. Research Topics
  5. Guest lectures from industry practitioners

Learning Outcomes

The course aims to provide an understanding of the properties of reinforcement learning algorithms, develop skills to appropriately use methods for the development of dedicated reinforcement learning algorithms or apply existing methods in research projects, and enable students to implement their own algorithms and use existing libraries offering reinforcement learning procedures. It also fosters critical thinking, entrepreneurial action, and the importance of expert opinions.

Repository Contents

The repository consists of Jupyter notebooks, scripts, and resources used to solve the course exercises and projects.

Getting Started

  1. Clone the repository
  2. Navigate into the repository
  3. Install required Python packages
  4. Launch Jupyter Notebook

Disclaimer

This repository is for personal academic use. Plagiarism is not encouraged. If you're a student in the "Reinforcement Learning" course, refrain from copying or using this material for graded assignments. Use this for learning and understanding.

About

Personal solutions for the 'Reinforcement Learning' course at MIMUW, covering model-free methods, model-based methods, and search-based methods.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published