Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MRG] Backport #12815 #12816

Open
wants to merge 2 commits into
base: maint/1.8
Choose a base branch
from

add entry to conftest

bb9898f
Select commit
Loading
Failed to load commit list.
Open

[MRG] Backport #12815 #12816

add entry to conftest
bb9898f
Select commit
Loading
Failed to load commit list.
Azure Pipelines / mne-tools.mne-python failed Aug 31, 2024 in 54m 49s

Build #20240831.5 had test failures

Details

Tests

  • Failed: 1 (0.01%)
  • Passed: 7,366 (89.52%)
  • Other: 861 (10.46%)
  • Total: 8,228
Code coverage

  • 32303 of 42590 branches covered (75.85%)
  • 100796 of 121248 lines covered (83.13%)

Annotations

Check failure on line 23 in Build log

See this annotation in the file changed.

@azure-pipelines azure-pipelines / mne-tools.mne-python

Build log #L23

There are one or more test failures detected in result files. Detailed summary of published test results can be viewed in the Tests tab.

Check failure on line 4248 in Build log

See this annotation in the file changed.

@azure-pipelines azure-pipelines / mne-tools.mne-python

Build log #L4248

Cmd.exe exited with code '1'.

Check failure on line 1 in test_get_coef

See this annotation in the file changed.

@azure-pipelines azure-pipelines / mne-tools.mne-python

test_get_coef

RuntimeWarning: invalid value encountered in cast
Raw output
mne\decoding\tests\test_base.py:172: in test_get_coef
    clf.fit(X, y)
C:\hostedtoolcache\windows\Python\3.12.4\x64\Lib\site-packages\sklearn\base.py:1514: in wrapper
    return fit_method(estimator, *args, **kwargs)
C:\hostedtoolcache\windows\Python\3.12.4\x64\Lib\site-packages\sklearn\pipeline.py:469: in fit
    self._final_estimator.fit(Xt, y, **last_step_params["fit"])
mne\decoding\base.py:125: in fit
    self.model.fit(X, y, **fit_params)
C:\hostedtoolcache\windows\Python\3.12.4\x64\Lib\site-packages\sklearn\base.py:1514: in wrapper
    return fit_method(estimator, *args, **kwargs)
C:\hostedtoolcache\windows\Python\3.12.4\x64\Lib\site-packages\sklearn\model_selection\_search.py:1016: in fit
    self._run_search(evaluate_candidates)
C:\hostedtoolcache\windows\Python\3.12.4\x64\Lib\site-packages\sklearn\model_selection\_search.py:1570: in _run_search
    evaluate_candidates(ParameterGrid(self.param_grid))
C:\hostedtoolcache\windows\Python\3.12.4\x64\Lib\site-packages\sklearn\model_selection\_search.py:1010: in evaluate_candidates
    results = self._format_results(
C:\hostedtoolcache\windows\Python\3.12.4\x64\Lib\site-packages\sklearn\model_selection\_search.py:1134: in _format_results
    for param, ma in _yield_masked_array_for_each_param(candidate_params):
C:\hostedtoolcache\windows\Python\3.12.4\x64\Lib\site-packages\sklearn\model_selection\_search.py:425: in _yield_masked_array_for_each_param
    ma = MaskedArray(np.empty(n_candidates), mask=True, dtype=arr_dtype)
C:\hostedtoolcache\windows\Python\3.12.4\x64\Lib\site-packages\numpy\ma\core.py:2881: in __new__
    _data = np.array(data, dtype=dtype, copy=copy,
E   RuntimeWarning: invalid value encountered in cast