Skip to content

modularyzacja/book-python

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python 3: From None to Machine Learning

Title:Python 3: from None to Machine Learning
Author: Matt Harasymczuk
Language:English
ISBN:978-83-957186-2-5
Year:2015-2021
Online Access:https://python.astrotech.io
License:Creative Commons Attribution-ShareAlike 4.0 International License

Author

_static/img/AstroMatt.jpg
author Matt Harasymczuk
email [email protected]
www https://www.astronaut.center
github https://github.com/astromatt
linkedin https://linkedin.com/in/mattharasymczuk
facebook https://facebook.com/matt.harasymczuk
slideshare https://www.slideshare.net/astrotech/presentations
Other Books from Author. Learn more at https://www.astronaut.center/books
ISBN Online Access Title
978-83-957186-2-5 https://python.astrotech.io Python 3: from None to Machine Learning
978-83-957186-3-2 https://dev.astrotech.io The Software Engineering: DevOps, CI/CD, Docker, Provisioning and Git Flow
978-83-957186-0-1 https://www.astronaut.pl Astronaut Selection and Training for Long Duration Spaceflight and Extraterrestrial Activity
978-83-956752-0-1 https://www.astronaut.center/books Space in Practice: How to Prepare and Conduct Stratospheric Balloon Mission
978-83-957186-4-9 https://pl.habitatos.space HabitatOS - Development of operating system prototype for Lunar and Martian habitats
978-83-957186-1-8 https://alsep.astronaut.center Geophysics experiments from Apollo Lunar Surface Experiments Package

Note

  • For consulting or training course requests please email [email protected]
  • Before training course please setup your environment
  • More information in Install

About

Python 3: from None to Machine Learning; ISBN: 9788395718625

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 86.0%
  • Python 10.3%
  • HTML 3.4%
  • CSS 0.2%
  • JavaScript 0.1%
  • TeX 0.0%