-
Notifications
You must be signed in to change notification settings - Fork 1.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
The Udacity template has python3.x among requisites. Unfortunately, the server that I use for training features python2.7: thus I made this script to be able to perform the network training.
- Loading branch information
Showing
1 changed file
with
284 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,284 @@ | ||
""" | ||
Dirty and running file to use Python2.7 | ||
Dependency form helper and unittests have been removed due to compatibility issues. | ||
Once training is done, code will be moved to `main.py` | ||
""" | ||
from __future__ import division | ||
import tensorflow as tf | ||
import warnings | ||
from distutils.version import LooseVersion | ||
from os.path import join, expanduser | ||
import re | ||
import random | ||
import shutil | ||
import numpy as np | ||
import os.path | ||
import scipy.misc | ||
import time | ||
from glob import glob | ||
|
||
|
||
def gen_batch_function(data_folder, image_shape): | ||
""" | ||
Generate function to create batches of training data | ||
:param data_folder: Path to folder that contains all the datasets | ||
:param image_shape: Tuple - Shape of image | ||
:return: | ||
""" | ||
def get_batches_fn(batch_size): | ||
""" | ||
Create batches of training data | ||
:param batch_size: Batch Size | ||
:return: Batches of training data | ||
""" | ||
image_paths = glob(os.path.join(data_folder, 'image_2', '*.png')) | ||
label_paths = { | ||
re.sub(r'_(lane|road)_', '_', os.path.basename(path)): path | ||
for path in glob(os.path.join(data_folder, 'gt_image_2', '*_road_*.png'))} | ||
background_color = np.array([255, 0, 0]) | ||
|
||
random.shuffle(image_paths) | ||
for batch_i in range(0, len(image_paths), batch_size): | ||
images = [] | ||
gt_images = [] | ||
for image_file in image_paths[batch_i:batch_i+batch_size]: | ||
gt_image_file = label_paths[os.path.basename(image_file)] | ||
|
||
image = scipy.misc.imresize(scipy.misc.imread(image_file), image_shape) | ||
gt_image = scipy.misc.imresize(scipy.misc.imread(gt_image_file), image_shape) | ||
|
||
gt_bg = np.all(gt_image == background_color, axis=2) | ||
h, w = gt_bg.shape | ||
gt_bg = gt_bg.reshape(h, w, 1) | ||
gt_image = np.concatenate((gt_bg, np.invert(gt_bg)), axis=2) | ||
|
||
images.append(image) | ||
gt_images.append(gt_image) | ||
|
||
yield np.array(images), np.array(gt_images) | ||
return get_batches_fn | ||
|
||
|
||
def gen_test_output(sess, logits, keep_prob, image_pl, data_folder, image_shape): | ||
""" | ||
Generate test output using the test images | ||
:param sess: TF session | ||
:param logits: TF Tensor for the logits | ||
:param keep_prob: TF Placeholder for the dropout keep robability | ||
:param image_pl: TF Placeholder for the image placeholder | ||
:param data_folder: Path to the folder that contains the datasets | ||
:param image_shape: Tuple - Shape of image | ||
:return: Output for for each test image | ||
""" | ||
for image_file in glob(os.path.join(data_folder, 'image_2', '*.png')): | ||
image = scipy.misc.imresize(scipy.misc.imread(image_file), image_shape) | ||
|
||
im_softmax = sess.run( | ||
[tf.nn.softmax(logits)], | ||
{keep_prob: 1.0, image_pl: [image]}) | ||
im_softmax = im_softmax[0][:, 1].reshape(image_shape[0], image_shape[1]) | ||
segmentation = (im_softmax > 0.5).reshape(image_shape[0], image_shape[1], 1) | ||
mask = np.dot(segmentation, np.array([[0, 255, 0, 127]])) | ||
mask = scipy.misc.toimage(mask, mode="RGBA") | ||
street_im = scipy.misc.toimage(image) | ||
street_im.paste(mask, box=None, mask=mask) | ||
|
||
yield os.path.basename(image_file), np.array(street_im) | ||
|
||
|
||
def save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image): | ||
# Make folder for current run | ||
output_dir = os.path.join(runs_dir, str(time.time())) | ||
if os.path.exists(output_dir): | ||
shutil.rmtree(output_dir) | ||
os.makedirs(output_dir) | ||
|
||
# Run NN on test images and save them to HD | ||
print('Training Finished. Saving test images to: {}'.format(output_dir)) | ||
image_outputs = gen_test_output( | ||
sess, logits, keep_prob, input_image, os.path.join(data_dir, 'data_road/testing'), image_shape) | ||
for name, image in image_outputs: | ||
scipy.misc.imsave(os.path.join(output_dir, name), image) | ||
|
||
|
||
# Check TensorFlow Version | ||
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__) | ||
print('TensorFlow Version: {}'.format(tf.__version__)) | ||
|
||
# Check for a GPU | ||
if not tf.test.gpu_device_name(): | ||
warnings.warn('No GPU found. Please use a GPU to train your neural network.') | ||
else: | ||
print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) | ||
|
||
|
||
def load_vgg(sess, vgg_path): | ||
""" | ||
Load Pretrained VGG Model into TensorFlow. | ||
:param sess: TensorFlow Session | ||
:param vgg_path: Path to vgg folder, containing "variables/" and "saved_model.pb" | ||
:return: Tuple of Tensors from VGG model (image_input, keep_prob, layer3_out, layer4_out, layer7_out) | ||
""" | ||
|
||
vgg_input_tensor_name = 'image_input:0' | ||
vgg_keep_prob_tensor_name = 'keep_prob:0' | ||
vgg_layer3_out_tensor_name = 'layer3_out:0' | ||
vgg_layer4_out_tensor_name = 'layer4_out:0' | ||
vgg_layer7_out_tensor_name = 'layer7_out:0' | ||
|
||
tf.saved_model.loader.load(sess, ['vgg16'], vgg_path) | ||
graph = tf.get_default_graph() | ||
|
||
image_input = graph.get_tensor_by_name(vgg_input_tensor_name) | ||
keep_prob = graph.get_tensor_by_name(vgg_keep_prob_tensor_name) | ||
layer3_out = graph.get_tensor_by_name(vgg_layer3_out_tensor_name) | ||
layer4_out = graph.get_tensor_by_name(vgg_layer4_out_tensor_name) | ||
layer7_out = graph.get_tensor_by_name(vgg_layer7_out_tensor_name) | ||
|
||
return image_input, keep_prob, layer3_out, layer4_out, layer7_out | ||
|
||
|
||
def layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes): | ||
""" | ||
Create the layers for a fully convolutional network. Build skip-layers using the vgg layers. | ||
For reference: https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf | ||
:param vgg_layer7_out: TF Tensor for VGG Layer 3 output | ||
:param vgg_layer4_out: TF Tensor for VGG Layer 4 output | ||
:param vgg_layer3_out: TF Tensor for VGG Layer 7 output | ||
:param num_classes: Number of classes to classify | ||
:return: The Tensor for the last layer of output | ||
""" | ||
|
||
kernel_regularizer = tf.contrib.layers.l2_regularizer(0.5) | ||
|
||
# Compute logits | ||
layer3_logits = tf.layers.conv2d(vgg_layer3_out, num_classes, kernel_size=[1, 1], | ||
padding='same', kernel_regularizer=kernel_regularizer) | ||
layer4_logits = tf.layers.conv2d(vgg_layer4_out, num_classes, kernel_size=[1, 1], | ||
padding='same', kernel_regularizer=kernel_regularizer) | ||
layer7_logits = tf.layers.conv2d(vgg_layer7_out, num_classes, kernel_size=[1, 1], | ||
padding='same', kernel_regularizer=kernel_regularizer) | ||
|
||
# Add skip connection before 4th and 7th layer | ||
layer7_logits_up = tf.image.resize_images(layer7_logits, size=[10, 36]) | ||
layer_4_7_fused = tf.add(layer7_logits_up, layer4_logits) | ||
|
||
# Add skip connection before (4+7)th and 3rd layer | ||
layer_4_7_fused_up = tf.image.resize_images(layer_4_7_fused, size=[20, 72]) | ||
layer_3_4_7_fused = tf.add(layer3_logits, layer_4_7_fused_up) | ||
|
||
# resize to original size | ||
layer_3_4_7_up = tf.image.resize_images(layer_3_4_7_fused, size=[160, 576]) | ||
|
||
return layer_3_4_7_up | ||
|
||
|
||
def optimize(net_prediction, labels, learning_rate, num_classes): | ||
""" | ||
Build the TensorFLow loss and optimizer operations. | ||
:param net_prediction: TF Tensor of the last layer in the neural network | ||
:param labels: TF Placeholder for the correct label image | ||
:param learning_rate: TF Placeholder for the learning rate | ||
:param num_classes: Number of classes to classify | ||
:return: Tuple of (logits, train_op, cross_entropy_loss) | ||
""" | ||
|
||
# Unroll | ||
logits_flat = tf.reshape(net_prediction, (-1, num_classes)) | ||
labels_flat = tf.reshape(labels, (-1, num_classes)) | ||
|
||
# Define loss | ||
cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels_flat, logits=logits_flat)) | ||
|
||
# Define optimization step | ||
train_step = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cross_entropy_loss) | ||
|
||
return logits_flat, train_step, cross_entropy_loss | ||
|
||
|
||
def train_nn(sess, training_epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, | ||
image_input, labels, keep_prob, learning_rate): | ||
""" | ||
Train neural network and print out the loss during training. | ||
:param sess: TF Session | ||
:param training_epochs: Number of epochs | ||
:param batch_size: Batch size | ||
:param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size) | ||
:param train_op: TF Operation to train the neural network | ||
:param cross_entropy_loss: TF Tensor for the amount of loss | ||
:param image_input: TF Placeholder for input images | ||
:param labels: TF Placeholder for label images | ||
:param keep_prob: TF Placeholder for dropout keep probability | ||
:param learning_rate: TF Placeholder for learning rate | ||
""" | ||
|
||
# Variable initialization | ||
sess.run(tf.global_variables_initializer()) | ||
|
||
lr = 1e-4 | ||
examples_each_epoch = 100 | ||
|
||
for e in range(0, training_epochs): | ||
|
||
loss_this_epoch = 0.0 | ||
|
||
for i in range(0, examples_each_epoch): | ||
|
||
# Load a batch of examples | ||
batch_x, batch_y = next(get_batches_fn(batch_size)) | ||
|
||
_, cur_loss = sess.run(fetches=[train_op, cross_entropy_loss], | ||
feed_dict={image_input: batch_x, labels: batch_y, keep_prob: 0.25, learning_rate: lr}) | ||
|
||
loss_this_epoch += cur_loss | ||
|
||
print('Epoch: {:02d} - Loss: {:.03f}'.format(e, loss_this_epoch / examples_each_epoch)) | ||
|
||
|
||
def run(): | ||
|
||
num_classes = 2 | ||
|
||
image_h, image_w = (160, 576) | ||
|
||
with tf.Session() as sess: | ||
|
||
# Path to vgg model | ||
vgg_path = join(data_dir, 'vgg') | ||
|
||
# Create function to get batches | ||
batch_generator = gen_batch_function(join(data_dir, 'data_road/training'), (image_h, image_w)) | ||
|
||
# Load VGG pretrained | ||
image_input, keep_prob, vgg_layer3_out, vgg_layer4_out, vgg_layer7_out = load_vgg(sess, vgg_path) | ||
|
||
# Add skip connections | ||
output = layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes) | ||
|
||
# Define placeholders | ||
labels = tf.placeholder(tf.float32, shape=[None, image_h, image_w, num_classes]) | ||
learning_rate = tf.placeholder(tf.float32, shape=[]) | ||
|
||
logits, train_op, cross_entropy_loss = optimize(output, labels, learning_rate, num_classes) | ||
|
||
# Training parameters | ||
training_epochs = 40 | ||
batch_size = 8 | ||
|
||
train_nn(sess, training_epochs, batch_size, batch_generator, train_op, cross_entropy_loss, | ||
image_input, labels, keep_prob, learning_rate) | ||
|
||
save_inference_samples(runs_dir, data_dir, sess, (image_h, image_w), logits, keep_prob, image_input) | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
data_dir = join(expanduser("~"), 'code', 'self-driving-car', 'project_12_road_segmentation', 'data') | ||
runs_dir = join(expanduser("~"), 'majinbu_home', 'road_segmentation_prediction') | ||
# runs_dir = join(expanduser("~"), 'code', 'self-driving-car', 'project_12_road_segmentation', 'runs') | ||
|
||
run() |