Generate fingerstyle guitar tabs based on the difficulty of different finger positions. Built with Rust. Designed for compilation to WebAssembly for use in web applications.
- Guitar Tab Generator
- Input pitch parsing
- Alternate tunings
- Capo consideration
- Any number of strings (not just 6 string guitars!)
- Configurable number of frets
- Tab width and padding formatting
- Playback indicator for playback applications
- Pathfinding algorithm leverage Dijkstra's algorithm to calculate the arrangement with the least difficulty.
This project has been attempted numerous times with varying levels of success. This attempt utilizes Rust and WASM to overcome the previously-encountered roadblocks regarding performance, distribution, and developer ergonomics.
- Typescript version (2022)
- Java version (2019 - 2022)
The pathfinding calculation is initiated by the Arrangement::create_arrangements()
function.
Let's look at an example with a standard guitar where we want to find the optimal arrangement to play a G3, then a rest, then a B3, then a D4 and G4 simultaneously. The pitch input for this example could look like this:
G3
B3
D4G4
The different fingerings are then calculated for each pitch. For example, a G3 can be played on string 3 at fret 0, or string 4 at fret 5, and so on:
Representation | String | Fret |
---|---|---|
G3 : 3 β 0 | 3 | 0 |
G3 : 4 β 5 | 4 | 5 |
G3 : 5 β 10 | 5 | 10 |
G3 : 6 β 15 | 6 | 15 |
Representation | String | Fret |
---|---|---|
B3 : 2 β 0 | 2 | 0 |
B3 : 3 β 4 | 3 | 4 |
B3 : 4 β 9 | 4 | 9 |
B3 : 5 β 14 | 5 | 14 |
Representation | String | Fret | Representation | String | Fret | |
---|---|---|---|---|---|---|
D4 : 2 β 3 | 2 | 3 | G4 : 1 β 3 | 1 | 3 | |
D4 : 3 β 7 | 3 | 7 | G4 : 2 β 8 | 2 | 8 | |
D4 : 4 β 12 | 4 | 12 | G4 : 3 β 12 | 3 | 12 | |
D4 : 5 β 17 | 5 | 17 | G4 : 4 β 17 | 4 | 17 |
For beat 1 and beat 3, the fingering combinations are identical to the pitch fingerings since those beats only play one pitch each. For beat 4, we calculate the cartesian product of the pitch fingerings to consider all of the fingerings combinations.
D4 Fingering | G4 Fingering | |
---|---|---|
D4 : 2 β 3 | G4 : 1 β 3 | |
D4 : 2 β 3 | G4 : 3 β 12 | |
D4 : 2 β 3 | G4 : 4 β 17 | |
D4 : 3 β 7 | G4 : 1 β 3 | |
D4 : 3 β 7 | G4 : 2 β 8 | |
D4 : 3 β 7 | G4 : 4 β 17 | |
D4 : 4 β 12 | G4 : 1 β 3 | |
D4 : 4 β 12 | G4 : 2 β 8 | |
D4 : 4 β 12 | G4 : 3 β 12 | |
D4 : 5 β 17 | G4 : 1 β 3 | |
D4 : 5 β 17 | G4 : 2 β 8 | |
D4 : 5 β 17 | G4 : 3 β 12 | |
D4 : 5 β 17 | G4 : 4 β 17 |
Note:
D4 : 2 β 3
withG4 : 1 β 3
is valid; whileD4 : 2 β 3
withG4 : 2 β 8
is invalid since multiple frets cannot be played on the same string.
To calculate the optimal set of fingering combinations of each beat, we construct a node for each fingering combination. The node contains underlying data that informs the calculation of the difficulty of progressing from one fingering combination to another including
- the average non-zero fret value
- the non-zero fret span
Additionally, each node must be unique so the beat index is included in the underlying data of the node.
flowchart TB
subgraph Beat1
direction TB
1.1("G3 : 3 β 0")
1.2("G3 : 4 β 5")
1.3("G3 : 5 β 10")
1.4("G3 : 6 β 15")
end
subgraph Beat2
direction TB
2.1("Rest")
end
subgraph Beat3
direction TB
3.1("B3 : 2 β 0")
3.2("B3 : 3 β 4")
3.3("B3 : 4 β 9")
3.4("B3 : 5 β 14")
end
subgraph Beat4
direction TB
4.1("D4 : 2 β 3 \nG4 : 1 β 3")
4.2("D4 : 2 β 3 \nG4 : 3 β 12")
4.3("D4 : 2 β 3 \nG4 : 4 β 17")
4.4("D4 : 3 β 7 \nG4 : 1 β 3")
4.5("D4 : 3 β 7 \nG4 : 2 β 8")
4.6("D4 : 3 β 7 \nG4 : 4 β 17")
4.7("D4 : 4 β 12\nG4 : 1 β 3")
4.8("D4 : 4 β 12\nG4 : 2 β 8")
4.9("D4 : 4 β 12\nG4 : 3 β 12")
4.10("D4 : 5 β 17\nG4 : 1 β 3")
4.11("D4 : 5 β 17\nG4 : 2 β 8")
4.12("D4 : 5 β 17\nG4 : 3 β 12")
4.13("D4 : 5 β 17\nG4 : 4 β 17")
end
Beat1 ~~~ Beat2 ~~~ Beat3 ~~~ Beat4
With the node edges, we can see the directed graph take shape:
%%{ init: { 'flowchart': { 'curve': 'basis' } } }%%
flowchart TB
subgraph Beat1
direction TB
1.1("G3 : 3 β 0")
1.2("G3 : 4 β 5")
1.3("G3 : 5 β 10")
1.4("G3 : 6 β 15")
end
1.1 & 1.2 & 1.3 & 1.4 --> 2.1
subgraph Beat2
direction TB
2.1("Rest")
end
2.1 --> 3.1 & 3.2 & 3.3 & 3.4
subgraph Beat3
direction TB
3.1("B3 : 2 β 0")
3.2("B3 : 3 β 4")
3.3("B3 : 4 β 9")
3.4("B3 : 5 β 14")
end
3.1 & 3.2 & 3.3 & 3.4 --> 4.1 & 4.2 & 4.3 & 4.4 & 4.5 & 4.6 & 4.7 & 4.8 & 4.9 & 4.10 & 4.11 & 4.12 & 4.13
subgraph Beat4
direction TB
4.1("D4 : 2 β 3 \nG4 : 1 β 3")
4.2("D4 : 2 β 3 \nG4 : 3 β 12")
4.3("D4 : 2 β 3 \nG4 : 4 β 17")
4.4("D4 : 3 β 7 \nG4 : 1 β 3")
4.5("D4 : 3 β 7 \nG4 : 2 β 8")
4.6("D4 : 3 β 7 \nG4 : 4 β 17")
4.7("D4 : 4 β 12\nG4 : 1 β 3")
4.8("D4 : 4 β 12\nG4 : 2 β 8")
4.9("D4 : 4 β 12\nG4 : 3 β 12")
4.10("D4 : 5 β 17\nG4 : 1 β 3")
4.11("D4 : 5 β 17\nG4 : 2 β 8")
4.12("D4 : 5 β 17\nG4 : 3 β 12")
4.13("D4 : 5 β 17\nG4 : 4 β 17")
end
Beat1 ~~~ Beat2 ~~~ Beat3 ~~~ Beat4
The number of fingering combinations grows exponentially with more beats and pitches so the choice of shortest path algorithm is critical. The Dijkstra pathfinding algorithm was chosen for this application of the "shortest path exercise" for the following reasons:
- The sequential nature of the musical arrangement problem results in a directed graph where only nodes representing consecutive beat fingering combinations have edges from one to the next.
- The edges between nodes are weighted with the difficulty of moving from one fingering combination to another so the graph above is already constructed with the only possible next nodes connected.
Requires:
git clone https://github.com/noahbaculi/guitar-tab-generator.git
cd guitar-tab-generator
cargo run --example basic
cargo run --example advanced
bacon
cargo tarpaulin --out Html --output-dir dev/tarpaulin-coverage
unused-features analyze --report-dir 'dev/unused-features-report'
unused-features build-report --input 'dev/unused-features-report/report.json'
wasm-pack build --target web --out-dir pkg/wasm_guitar_tab_generator
# check binary size
ls -l pkg/wasm_guitar_tab_generator/guitar_tab_generator_bg.wasm